
LLNL-PRES-806064
This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

spack.io

Managing HPC Software Complexity
with Spack

SC21 Full-day Tutorial
Nov 14, 2021The most recent version of these slides can be found at:

https://spack-tutorial.readthedocs.io

https://spack.readthedocs.io/en/latest/tutorial.html

LLNL-PRES-806064
2Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Find these slides and associated scripts here:

spack-tutorial.readthedocs.io

Tutorial Materials

We will also have a chat room on Spack slack.
You can join here:

We will monitor the chat during the tutorial, but we'll also
help in person. You can ask questions here after
the conference is over.

slack.spack.io
Join the “tutorial” channel!

LLNL-PRES-806064
3Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Tutorial Presenters

Greg Becker
LLNL

Tamara Dahlgren
LLNL

Massimiliano Culpo
np-complete, S.r.l.

Robert Blake
LLNL

Peter Scheibel,
LLNL

Harmen
Stopples
CSCS

Todd Gamblin
LLNL

Adam Stewart
UIUC

In person:

Also brought to you by:

LLNL-PRES-806064
4Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Intro 8:00 – 8:30
Basics 8:30 – 9:15
Concepts 9:15 – 10:00

Break 10:00 – 10:30
Environments 10:30 – 11:15
Configuration 11:15 – 12:00

Lunch 12:00 - 1:30

Packaging 1:30 – 2:15
Developer Workflows 2:15 – 3:00
Break 3:00 – 3:30

Mirrors 3:30 – 3:50
Stacks 3:50 – 4:15
Scripting 4:15 – 4:40
Roadmap 4:40 – 5:00

Agenda (times may change)

Morning

Afternoon

LLNL-PRES-806064
5Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Modern scientific codes rely on icebergs of dependency libraries

sqlite

readline

zlib

cmake

ncurses

openssl

py-setuptools

python

cub

libjpeg-turbo

nasm

py-pyparsingpy-pillow

libxml2

xz

libiconv

pkgconf

automake

autoconf

perl

py-cycler

py-six

py-protobuf

protobuf

libffi

bzip2

gdbm

expatgettext

texinfo

freetype

libpng py-kiwisolver

py-numexpr

py-numpy

ninja

py-onnx

py-typing py-typing-extensionsopenblas

cnpy

diffutils

m4

libtiff py-pytznccl

cuda

py-cython

libsigsegv

conduit

mpich

hdf5

py-setuptools-scm

findutils

py-matplotlib

py-python-dateutil

py-configparser

libtool

tar

cereal

hydrogen

aluminum

hwloc

py-graphviz

py-pandas

py-bottleneck

cudnn

lbann

py-texttable

opencv

71 packages
188 dependencies

LBANN: Neural Nets for HPC

cmake

ncurses

openssl

diffutils

libiconv

pkgconf

libffi

zlib

hypre

openmpi

openblashdf5

python

sqlite

gettext

gdbm xz

readline

expat

bzip2perl

sundials

libxml2

tar

hwloc

metis

mfem

petsc

superlu-dist

parmetis

MFEM:
Higher-order finite elements

31 packages,
69 dependencies

ncurses

pkgconf

r-colorspace

r

xz

r-pkgconfig r-numderiv

bison

diffutils

help2man

perl

m4

r-stringr

r-magrittrr-stringi r-glue

nasm

r-withr

r-lava

r-squarem

r-survival

r-matrixstats

r-scales

r-viridislite

r-rcolorbrewer

r-munsell

r-r6

r-labeling

r-rcpp

openssl

zlib

r-adabag

r-caret

r-doparallel

r-rpart

r-foreach

libtiff

libjpeg-turbo

r-mclust

python

libffi

readline

sqlitebzip2

gettext

gdbm

expat fontsproto

util-macros

r-strucchange

r-zoo

r-sandwich

r-rlang

r-plotmo

r-plotrix r-formula r-teachingdemos

pcre

r-condop

r-genomeinfodbr-plyr

r-genomicranges

r-rminer

r-earth

r-randomforest

r-s4vectors

r-seqinr

r-iranges

r-recipes

r-modelmetrics

r-nlme

r-reshape2

r-ggplot2

r-lattice

r-xgboost

r-matrix

r-data-table

findutils

libtoolautomake

autoconf

texinfo

r-biocgenerics

r-genomeinfodbdata

r-rcurl

openjdk

r-iterators

berkeley-db

r-nnet

r-backports

r-tidyselect

r-timedater-tidyr

r-dplyr

r-generics

r-purrr

r-tibble

r-lubridate

r-ipred

r-gower

r-segmented

r-mda

r-class

r-crayon

libiconv

libidn2

libunistring

r-kknn

r-igraph

r-prodlim

r-kernsmooth

r-mvtnorm

ninja

tar

r-modeltools

libfontenc

xproto

freetype

libpng

gmake

r-mgcv

r-plogr

r-cubist

r-assertthat

r-bh

r-xvector

r-zlibbioc

r-pls

r-th-data

r-mass

r-ade4

font-util

mkfontscale

bdftopcfmkfontdir

icu4c

libxml2

glpk

gmp

r-lazyeval

r-fansi

r-e1071

r-party

r-glmnet

r-kernlab

r-vctrs

r-zeallotr-ellipsis r-digest

r-codetools

r-coin

r-multcomp r-libcoin

gperf

pixman

pango

harfbuzz

cairo

gobject-introspection

fontconfigglib

r-bitops

sed

flex

r-pillar

r-utf8 r-cli

libsigsegv

curl

cmake

r-gtable

libxfont

tcl

pcre2

libuuidmeson

py-setuptools

xtrans

r-condop:
R Genome Data Analysis Tools

179 packages,
527 dependencies

LLNL-PRES-806064
6Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ 1:1 relationship between source code and binary (per platform)
— Good for reproducibility (e.g., Debian)
— Bad for performance optimization

§ Binaries should be as portable as possible
— What most distributions do
— Again, bad for performance

§ Toolchain is the same across the ecosystem
— One compiler, one set of runtime libraries
— Or, no compiler (for interpreted languages)

Some fairly common (but questionable) assumptions
made by package managers (conda, pip, apt, etc.)

Outside these boundaries, users are typically on their own

LLNL-PRES-806064
7Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ Code is typically distributed as source
— With exception of vendor libraries, compilers

§ Often build many variants of the same package
— Developers’ builds may be very different
— Many first-time builds when machines are new

§ Code is optimized for the processor and GPU
— Must make effective use of the hardware
— Can make 10-100x perf difference

§ Rely heavily on system packages
— Need to use optimized libraries that come with machines
— Need to use host GPU libraries and network

§ Multi-language
— C, C++, Fortran, Python, others

all in the same ecosystem

High Performance Computing (HPC)
violates many of these assumptions

Oak Ridge National Lab
Power9 / NVIDIA

Summit

Lawrence Berkeley
National Lab

AMD Zen / NVIDIA

NERSC-9Perlmutter

Oak Ridge National Lab
AMD Zen / Radeon

Lawrence Livermore
National Lab

AMD Zen / Radeon

Argonne National Lab
Intel Xeon / Xe

Aurora

Current

Upcoming

Some Supercomputers

RIKEN
Fujitsu/ARM a64fx

Fugaku

LLNL-PRES-806064
8Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ Containers provide a great way to reproduce and distribute an
already-built software stack

§ Someone needs to build the container!
— This isn’t trivial
— Containerized applications still have hundreds of dependencies

§ Using the OS package manager inside a container is insufficient
— Most binaries are built unoptimized
— Generic binaries, not optimized for specific architectures

§ HPC containers may need to be rebuilt to support many
different hosts, anyway.
— Not clear that we can ever build one container for all facilities
— Containers likely won’t solve the N-platforms problem in HPC

What about containers?

We need something more flexible to build the containers

LLNL-PRES-806064
9Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

• Spack automates the build and installation of scientific software

• Packages are parameterized, so that users can easily tweak and tune configuration

• Ease of use of mainstream tools, with flexibility needed for HPC

• In addition to CLI, Spack also:
• Generates (but does not require) modules
• Allows conda/virtualenv-like environments
• Provides many devops features (CI, container generation, more)

$ spack install hdf5@1.10.5
$ spack install hdf5@1.10.5 %clang@6.0
$ spack install hdf5@1.10.5 +threadssafe

$ spack install hdf5@1.10.5 cppflags="-O3 –g3"
$ spack install hdf5@1.10.5 target=haswell
$ spack install hdf5@1.10.5 +mpi ^mpich@3.2

$ git clone https://github.com/spack/spack
$ spack install hdf5

No installation required: clone and go

Simple syntax enables complex installs

github.com/spack/spack

Spack enables Software distribution for HPC

LLNL-PRES-806064
10Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

What’s a package manager?

§ Spack is a package manager
— Does not a replace Cmake/Autotools
— Packages built by Spack can have any

build system they want

§ Spack manages dependencies
— Drives package-level build systems
— Ensures consistent builds

§ Determining magic configure lines
takes time
— Spack is a cache of recipes

• Manages package installation
• Manages dependency relationships
• May drive package-level build systems

Package
Manager

• Cmake, Autotools
• Handle library abstractions
• Generate Makefiles, etc.

High Level
Build

System

• Make, Ninja
• Handles dependencies among
commands in a single build

Low Level
Build

System

LLNL-PRES-806064
11Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

People who want to use or distribute software for HPC!

1. End Users of HPC Software
— Install and run HPC applications and tools

2. HPC Application Teams
— Manage third-party dependency libraries

3. Package Developers
— People who want to package their own software for distribution

4. User support teams at HPC Centers
— People who deploy software for users at large HPC sites

Who can use Spack?

LLNL-PRES-806064
12Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

The Spack community is constantly growing! 6,000+ software packages
930+ contributors

Package contribution rate
remained steady in 2021

Monthly active users

All time high of 4,688
monthly active users this October

LLNL-PRES-806064
13Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack has gained adoption rapidly (if stars are an indicator)

Star Spack at github.com/spack/spack if you like the tutorial!

😮

LLNL-PRES-806064
14Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack is used on the fastest supercomputers in the world

Includes:
1. Fugaku at RIKEN (Fujitsu ARM a64fx)
2. Summit at ORNL (Power9/Volta)
3. Sierra at LLNL (Power9/Volta)

LLNL-PRES-806064
15Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ Spack will be used to build software for the three upcoming
U.S. exascale systems

§ ECP has built the Extreme Scale Scientific Software Stack (E4S)
with Spack – more at https://e4s.io

§ Spack will be integral to upcoming ECP testing efforts.

Spack is critical for ECP’s mission to create a
robust, capable exascale software ecosystem.

https://e4s.io

Spack is the most depended-upon
project in ECP

https://e4s.io/

LLNL-PRES-806064
16Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

One month of Spack development is pretty busy!

LLNL-PRES-806064
17Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack’s widespread adoption has made it a de facto standard,
drawing contribution and collaboration from many vendors

§ AWS invests in cloud credits for Spack build farm
— Joint Spack tutorial in July with AWS had 125+ participants
— Joint AWS/AHUG Spack Hackathon drew 60+ participants

§ AMD has contributed ROCm packages and compiler support
— 55+ PRs mostly from AMD, also others
— ROCm, HIP, aocc packages are all in Spack now

§ Intel contributing OneApi support and licenses for our build farm

§ NVIDIA contributing NVHPC compiler support and other features

§ Fujitsu and RIKEN have contributed a huge number of packages
for ARM/a64fx support on Fugaku

§ ARM and Linaro members contributing ARM support
— 400+ pull requests for ARM support from various companies

LLNL-PRES-806064
18Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

1. “Functional” Package Managers
— Nix https://nixos.org/
— GNU Guix https://www.gnu.org/s/guix/

2. Build-from-source Package Managers
— Homebrew, LinuxBrew http://brew.sh
— MacPorts https://www.macports.org
— Gentoo https://gentoo.org

Other tools in the HPC Space:

§ Easybuild http://hpcugent.github.io/easybuild/
— An installation tool for HPC
— Focused on HPC system administrators – different package model from Spack
— Relies on a fixed software stack – harder to tweak recipes for experimentation

§ Conda https://conda.io
— Very popular binary package manager for data science
— Not targeted at HPC; generally has unoptimized binaries

Spack is not the only tool that automates builds

https://nixos.org/
https://www.gnu.org/s/guix/
http://brew.sh/
https://www.macports.org/
https://gentoo.org/
http://hpcugent.github.io/easybuild/
https://conda.io/

LLNL-PRES-806064
19Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Hands-on Time: Spack Basics

Follow script at spack-tutorial.readthedocs.io

http://spack.rtfd.io/

LLNL-PRES-806064
20Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Core Spack Concepts

LLNL-PRES-806064
21Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ Traditional binary package managers
— RPM, yum, APT, yast, etc.
— Designed to manage a single stack.
— Install one version of each package in a single prefix (/usr).
— Seamless upgrades to a stable, well tested stack

§ Port systems
— BSD Ports, portage, Macports, Homebrew, Gentoo, etc.
— Minimal support for builds parameterized by compilers, dependency versions.

§ Virtual Machines and Linux Containers (Docker)
— Containers allow users to build environments for different applications.
— Does not solve the build problem (someone has to build the image)
— Performance, security, and upgrade issues prevent widespread HPC deployment.

Most existing tools do not support combinatorial versioning

LLNL-PRES-806064
22Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

opt
!"" spack

#"" darwin-mojave-skylake
$!"" clang-10.0.0-apple
$ #"" bzip2-1.0.8-hc4sm4vuzpm4znmvrfzri4ow2mkphe2e
$ #"" python-3.7.6-daqqpssxb6qbfrztsezkmhus3xoflbsy
$ #"" sqlite-3.30.1-u64v26igxvxyn23hysmklfums6tgjv5r
$ #"" xz-5.2.4-u5eawkvaoc7vonabe6nndkcfwuv233cj
$!"" zlib-1.2.11-x46q4wm46ay4pltriijbgizxjrhbaka6
#"" darwin-mojave-x86_64
$!"" clang-10.0.0-apple
$!"" coreutils-8.29-pl2kcytejqcys5dzecfrtjqxfdssvnob

§ Each unique dependency graph is a
unique configuration.

§ Each configuration in a unique directory.
— Multiple configurations of the same

package can coexist.

§ Hash of entire directed acyclic graph
(DAG) is appended to each prefix.

§ Installed packages automatically find
dependencies
— Spack embeds RPATHs in binaries.
— No need to use modules or set

LD_LIBRARY_PATH
— Things work the way you built them

Spack handles combinatorial software complexity

mpileaks

mpi

callpath dyninst

libdwarf

libelf

Installation Layout

Dependency DAG

opt
!"" spack

#"" darwin-mojave-skylake
$!"" clang-10.0.0-apple
$ #"" bzip2-1.0.8-hc4sm4vuzpm4znmvrfzri4ow2mkphe2e
$ #"" python-3.7.6-daqqpssxb6qbfrztsezkmhus3xoflbsy
$ #"" sqlite-3.30.1-u64v26igxvxyn23hysmklfums6tgjv5r
$ #"" xz-5.2.4-u5eawkvaoc7vonabe6nndkcfwuv233cj
$!"" zlib-1.2.11-x46q4wm46ay4pltriijbgizxjrhbaka6
#"" darwin-mojave-x86_64
$!"" clang-10.0.0-apple
$!"" coreutils-8.29-pl2kcytejqcys5dzecfrtjqxfdssvnob

Hash

LLNL-PRES-806064
23Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

mpileaks

mpi

callpath dyninst

libdwarf

libelf

§ Spack ensures one configuration of each library per DAG
— Ensures ABI consistency.
— User does not need to know DAG structure; only the dependency names.

§ Spack can ensure that builds use the same compiler, or you can mix
— Working on ensuring ABI compatibility when compilers are mixed.

Spack Specs can constrain versions of dependencies

$ spack install mpileaks %intel@12.1 ^libelf@0.8.12

LLNL-PRES-806064
24Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack handles ABI-incompatible, versioned interfaces like MPI

$ spack install mpileaks ^mvapich@1.9 $ spack install mpileaks ^openmpi@1.4:

$ spack install mpileaks ^mpi@2

mpileaks

mpi

callpath dyninst

libdwarf

libelf

§ mpi is a virtual dependency

§ Install the same package built with two different MPI implementations:

§ Let Spack choose MPI implementation, as long as it provides MPI 2 interface:

LLNL-PRES-806064
25Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Concretization fills in missing configuration details
when the user is not explicit.

mpileaks ^callpath@1.0+debug ^libelf@0.8.11 User input: abstract spec with some constraints

Concrete spec is fully constrained
and can be passed to install.

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

callpath@1.0
%gcc@a4.7.3+debug

=linux-ppc64

dyninst@8.1.2
%gcc@4.7.3
=linux-ppc64

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

Abstract, normalized spec
with some dependencies.

mpileaks

mpi

callpath@1.0
+debug

dyninst

libelf@0.8.11

libdwarf

N
orm

alize

Concretize Store

spec:
- mpileaks:

arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
callpath: bah5f4h4d2n47mgycej2mtrnrivvxy77
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: 33hjjhxi7p6gyzn5ptgyes7sghyprujh
variants: {}
version: '1.0'

- adept-utils:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
boost: teesjv7ehpe5ksspjim5dk43a7qnowlq
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
variants: {}
version: 1.0.1

- boost:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies: {}
hash: teesjv7ehpe5ksspjim5dk43a7qnowlq
variants: {}
version: 1.59.0

...

spec.yaml

Detailed provenance is stored
with the installed package

LLNL-PRES-806064
26Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Use `spack spec` to see the results of concretization

$ spack spec mpileaks
Input spec

mpileaks

Concretized

mpileaks@1.0%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^adept-utils@1.0.1%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^boost@1.61.0%gcc@5.3.0+atomic+chrono+date_time~debug+filesystem~graph
~icu_support+iostreams+locale+log+math~mpi+multithreaded+program_options
~python+random +regex+serialization+shared+signals+singlethreaded+system
+test+thread+timer+wave arch=darwin-elcapitan-x86_64

^bzip2@1.0.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^zlib@1.2.8%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^openmpi@2.0.0%gcc@5.3.0~mxm~pmi~psm~psm2~slurm~sqlite3~thread_multiple~tm~verbs+vt arch=darwin-elcapitan-x86_64
^hwloc@1.11.3%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^libpciaccess@0.13.4%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^libtool@2.4.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^m4@1.4.17%gcc@5.3.0+sigsegv arch=darwin-elcapitan-x86_64
^libsigsegv@2.10%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^callpath@1.0.2%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^dyninst@9.2.0%gcc@5.3.0~stat_dysect arch=darwin-elcapitan-x86_64

^libdwarf@20160507%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^libelf@0.8.13%gcc@5.3.0 arch=darwin-elcapitan-x86_64

LLNL-PRES-806064
27Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack builds each package in its own compilation environment

Spack
Process

Set up environment

CC = spack/env/spack-cc SPACK_CC = /opt/ic-15.1/bin/icc
CXX = spack/env/spack-c++ SPACK_CXX = /opt/ic-15.1/bin/icpc
F77 = spack/env/spack-f77 SPACK_F77 = /opt/ic-15.1/bin/ifort
FC = spack/env/spack-f90 SPACK_FC = /opt/ic-15.1/bin/ifort

PKG_CONFIG_PATH = ... PATH = spack/env:$PATH
CMAKE_PREFIX_PATH = ...
LIBRARY_PATH = ...

do_install()

Install dep1 Install dep2 Install package…

Build
Process

Fork

install() configure make make install

-I /dep1-prefix/include
-L /dep1-prefix/lib
-Wl,-rpath=/dep1-prefix/lib

Compiler wrappers
(spack-cc, spack-c++, spack-f77, spack-f90)

icc icpc ifort

▪ Forked build process isolates environment for each build.
Uses compiler wrappers to:
— Add include, lib, and RPATH flags
— Ensure that dependencies are found automatically
— Load Cray modules (use right compiler/system deps)

LLNL-PRES-806064
28Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ Spack installs each package in its own prefix

§ Some packages need to be installed within directory structure of other packages
— i.e., Python modules installed in $prefix/lib/python-<version>/site-packages
— Spack supports this via extensions

Extensions and Python Support

class PyNumpy(Package):
"""NumPy is the fundamental package for scientific computing with Python."""

homepage = "https://numpy.org"
url = "https://pypi.python.org/packages/source/n/numpy/numpy-1.9.1.tar.gz"
version('1.9.1', ' 78842b73560ec378142665e712ae4ad9’)

extends('python’)

def install(self, spec, prefix):
setup_py("install“, "--prefix={0}".format(prefix))

LLNL-PRES-806064
29Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

spack/opt/
linux-rhel6-x86_64/
gcc-4.7.2/
python-2.7.12-6y6vvaw/
lib/python2.7/site-packages/
numpy@

py-numpy-1.10.4-oaxix36/
lib/python2.7/site-packages/
numpy/

...

Spack extensions

§ Symbolic link to Spack install location

§ This is an older feature – we are encouraging
users to use spack environments instead
— More on this later!

spack/opt/
linux-rhel6-x86_64/
gcc-4.7.2/
python-2.7.12-6y6vvaw/
lib/python2.7/site-packages/
..

py-numpy-1.10.4-oaxix36/
lib/python2.7/site-packages/
numpy/

...

$ spack activate py-numpy @1.10.4

§ Some packages need to be installed within
directory structure of other packages

§ Examples of extension packages:
— python libraries are a good example
— R, Lua, perl
— Need to maintain combinatorial versioning

LLNL-PRES-806064
30Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

packages:
mpi:

buildable: False
paths:

openmpi@2.0.0 %gcc@4.7.3 arch=linux-rhel6-ppc64:
/path/to/external/gcc/openmpi-2.0.0

openmpi@1.10.3 %gcc@4.7.3 arch=linux-rhel6-ppc64:
/path/to/external/gcc/openmpi-1.10.3

...

mpileaks@2.3
gcc@4.7.3

arch=linux-redhat6-ppc64

callpath@1.0
gcc@4.7.3

arch=linux-redhat6-ppc64
+debug

openmpi@2.0.0
gcc@4.7.3

arch=linux-redhat6-ppc64

dyninst@8.1.2
gcc@4.7.3

arch=linux-redhat6-ppc64

hwloc@1.11.3
gcc@4.7.3

arch=linux-redhat6-ppc64

libpciaccess@0.13.4
gcc@4.7.3

arch=linux-redhat6-ppc64

libtool@2.4.6
gcc@4.7.3

arch=linux-redhat6-ppc64

m4@1.4.17
gcc@4.7.3

arch=linux-redhat6-ppc64

libsigsegv@2.10
gcc@4.7.3

arch=linux-redhat6-ppc64

libelf@0.8.11
gcc@4.7.3

arch=linux-redhat6-ppc64

libdwarf@20130729
gcc@4.7.3

arch=linux-redhat6-ppc64

Building against externally installed software

mpileaks@2.3
gcc@4.7.3

arch=linux-redhat6-ppc64

callpath@1.0
gcc@4.7.3

arch=linux-redhat6-ppc64
+debug

openmpi@2.0.0
gcc@4.7.3

arch=linux-redhat6-ppc64

dyninst@8.1.2
gcc@4.7.3

arch=linux-redhat6-ppc64

libelf@0.8.11
gcc@4.7.3

arch=linux-redhat6-ppc64

libdwarf@20130729
gcc@4.7.3

arch=linux-redhat6-ppc64

/path/to/external/gcc/openmpi-2.0.0

packages.yaml

Users register external packages in a
configuration file (more on these later). Spack prunes the DAG when adding external packages.

mpileaks ^callpath@1.0+debug
^openmpi ^libelf@0.8.11

LLNL-PRES-806064
31Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

$ spack repo create /path/to/my_repo
$ spack repo add my_repo
$ spack repo list
==> 2 package repositories.
my_repo /path/to/my_repo
builtin spack/var/spack/repos/builtin

Spack package repositories

spack/var/spack/repos/builtin

“standard” packages in the spack mainline.

my_repo
proprietary packages, pathological builds

§ Spack supports external package
repositories
— Separate directories of package recipes

§ Many reasons to use this:
— Some packages can’t be released publicly
— Some sites require bizarre custom builds
— Override default packages with site-

specific versions

§ Packages are composable:
— External repositories can be layered on

top of the built-in packages
— Custom packages can depend on built-in

packages (or packages in other repos)

LLNL-PRES-806064
32Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack mirrors

§ Spack allows you to define mirrors:
§ Directories in the filesystem
§ On a web server
§ In an S3 bucket

§ Mirrors are archives of fetched tarballs, repositories,
and other resources needed to build
§ Can also contain binary packages

§ By default, Spack maintains a mirror in
var/spack/cache of everything you’ve fetched so far.

§ You can host mirrors internal to your site
§ See the documentation for more details

Spack
users

Local cache

Shared FS

S3 Bucket

Original source
on internet

LLNL-PRES-806064
33Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ spack.yaml describes project requirements

§ spack.lock describes exactly what versions/configurations
were installed, allows them to be reproduced.

§ Can also be used to maintain configuration together with
Spack packages.
— E.g., versioning your own local software stack with consistent

compilers/MPI implementations
— Allows developers and site support engineers to easily version

Spack configurations in a repository

Spack environments enable users to build customized stacks
from an abstract description

Simple spack.yaml file

install build
project

spack.yaml file with
names of required

dependencies

Lockfile describes
exact versions installed

Dependency
packages

Concrete spack.lock file (generated)

LLNL-PRES-806064
34Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Environments have enabled us to add build many features to
support developer workflows

Automatically find and configure external packages on the system

spack.yaml configurationpackage.py

spack external find

spack containerize
Turn environments into container build recipes

spack.yaml

.gitlab-ci.yml CI
pipeline

Automatically generate parallel build pipelines
(more on this later)

spack ci

class Libsigsegv(AutotoolsPackage, GNUMirrorPackage):
"""GNU libsigsegv is a library for handling page faults in user mode."""

... spack package contents ...

extra_install_tests = ‘tests/.libs’

def test(self):
data_dir = self.test_suite.current_test_data_dir
smoke_test_c = data_dir.join(‘smoke_test.c’)

self.run_test(
'cc’, [

'-I%s' % self.prefix.include,
'-L%s' % self.prefix.lib, '-lsigsegv’,
smoke_test_c,
'-o', 'smoke_test'

]
purpose='check linking’)

self.run_test(
‘smoke_test’, [], data_dir.join('smoke_test.out’),
purpose=‘run built smoke test’)

self.run_test('sigsegv1': ['Test passed’], purpose='check sigsegv1 output’)
self.run_test('sigsegv2': ['Test passed’], purpose='check sigsegv2 output’)

spack test
Packages know how to run their own test suites

package.py

LLNL-PRES-806064
35Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

E4S is ECP’s curated, Spack-based software distribution

• E4S is just a set of Spack packages
– 60+ packages (297 including dependencies)
– Growing to include all of ST and more

• Users can install E4S packages:
– In their home directory
– In a container

• Facilities can install E4S packages:
– On bare metal
– In a container

• Users and facilities can choose parts they want
– spack install only the packages you want
– Or just edit the list of packages (and configurations) you

want in a spack.yaml file

Actual E4S manifest (spack.yaml) for OLCF Ascent

More on E4S at https://e4s.io

https://e4s.io/

LLNL-PRES-806064
36Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ LLNL Applied ML team needed to deploy
— PyTorch + Kull development environment
— On ppc64le with system MPI

§ Before Spack
— Everybody built from scratch
— People wrote scripts and passed them around
— Days were spent trying to debug build differences

§ After spack
— Versioned reproducible spack environments in a git repo
— Standard environments in a shared team directory
— Team members can set up a customizable

environment in ~20 minutes.
• Change python version, PyTorch version on the fly
• Leverage binary caches to avoid redundant builds.

c/o Robert Blake

spack:
specs:
- py-horovod
- py-torch
- python
- py-h5py

packages:
all:

providers:
mpi:
- mvapich2@2.3
lapack:
- openblas threads=openmp
blas:
- openblas threads=openmp

buildable: true
variants: [+cuda cuda_arch=37]
compiler: [gcc@7.3.0]

...
python:

version: [3.8.6]
cudnn:

version:
- 8.0.4.30-11.1-linux-x64

py-torch:
buildable: true
variants: +cuda +distributed

mvapich2:
externals:
- spec: mvapich2@2.3.1%gcc@7.3.0

prefix: /usr/tce/packages/mvapich2/mvapich2-2.3-gcc-7.3.0
compilers:

- compiler:
operating_system: rhel7
paths:

cc: /usr/tce/packages/gcc/gcc-7.3.0/bin/gcc
cxx: /usr/tce/packages/gcc/gcc-7.3.0/bin/g++

spack.yaml file

The AML team has used Spack environments to accelerate
their workflow

We wanted to translate this workflow to larger codes.

LLNL-PRES-806064
37Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ spack ci enables any environment to be
turned into a build pipeline

§ Pipeline generates a .gitlab-ci.yml file
from spack.lock

§ Pipelines can be used just to build, or to
generate relocatable binary packages
— Binary packages can be used to keep the same

build from running twice

§ Same repository used for spack.yaml can
generate pipelines for project

Spack environments are the foundation of Spack CI

spack.yaml
Parallel GitLab build pipeline

LLNL-PRES-806064
38Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

We have expanded our CI builds to trigger on pull requests, allowing us to do CI in the cloud
for LLNL open source projects

spack ci

Spack Contributions
on GitHub

spack.yaml
configuration

gitlab.spack.io

GitLab CI builds (changed) packages
• On every pull request
• On every release branch
• Different compilers (Intel soon!)

• New security model supports untrusted contributions from
forks
– Sandboxed build caches for test builds
– Authoritative builds on mainline only after approved merge

x86_64 and aarch64
pipelines in AWS

ppc64le pipelines at
U. Oregon

Pipelines at LLNL
(new)

LLNL-PRES-806064
39Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Major new features:
1. New Concretizer is now default
2. Binary bootstrapping enables us to get up and running fast
3. spack install --reuse aggressively reuses installed packages
4. Improved error messages
5. Conditional variants for more expressive packages
6. Git commit versioning
7. Overrides for default config directories
8. Improvements to spack containerize
9. New commands for querying packages and tests by tag

§ 5,969 packages (920 added since 0.16)

§ Full release notes: https://github.com/spack/spack/releases/tag/v0.17.0

Spack v0.17.0 was just released!

https://github.com/spack/spack/releases/tag/v0.17.0

LLNL-PRES-806064
40Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ Search over a solution space:
— Possible dependency graphs (nodes, edges)
— Assignment of node and edge attributes

• Version
• Dependency, dependency type
• Compiler, compiler version
• Target
• Compiler, compiler version

§ Subject to validity constraints:
— Version requirements
— Target/compiler compatibility
— Virtual providers

§ Optimization picks “best” among valid solutions:
— Most recent versions
— Preferred variant values
— Preferred compilers that support best targets (e.g., AVX-512)
— Minimize number of builds

Package solving is combinatorial search with
constraints and optimization

cmake

ncurses

openssl

diffutils

libiconv

pkgconf

libffi

zlib

hypre

openmpi

openblashdf5

python

sqlite

gettext

gdbm xz

readline

expat

bzip2perl

sundials

libxml2

tar

hwloc

metis

mfem

petsc

superlu-dist

parmetis

This problem is NP-hard!

LLNL-PRES-806064
41Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

High level view of a Spack package build

• new versions
• new dependencies
• new constraints

package.py repository

local preferences config
packages.yaml

yaml

local environment config
spack.yaml

yaml

admins,
users

users

Command line constraints
spack install hdf5@1.12.0 +debug

Contributors

default config
packages.yaml

yamlspack
developers

users

concretizer

Concrete spec is
fully constrained
and can be built.

cmake

ncurses

openssl

diffutils

libiconv

pkgconf

libffi

zlib

hypre

openmpi

openblashdf5

python

sqlite

gettext

gdbm xz

readline

expat

bzip2perl

sundials

libxml2

tar

hwloc

metis

mfem

petsc

superlu-dist

parmetis

LLNL-PRES-806064
42Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ New concretizer leverages Clingo (see potassco.org)

§ Clingo is an Answer Set Programming (ASP) solver
— ASP looks like Prolog; leverages SAT solvers for speed/correctness
— ASP program has 2 parts:

1. Large list of facts generated from our package repositories and config
– 20,000 – 30,000 facts is typical – includes dependencies, options, etc.

2. Small logic program (~800 lines), including constraints and optimization
criteria

§ New algorithm on the Spack side is conceptually simpler:
— Generate facts for all possible dependencies, send to logic program
— Optimization criteria express preferences more clearly
— Build a DAG from the results

§ New concretizer solves many specs that current concretizer can’t
— Backtracking is a huge win – many issues resolved
— Currently requires user to install clingo with Spack
— Solver will be automatically installed from public binaries in 0.17.0

The new concretizer is now default in 0.17

Some facts for the HDF5 package

LLNL-PRES-806064
43Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

With and without reuse optimization

Pure hash-based reuse: all misses With reuse: 16 packages were actually acceptable

Note the bifurcated
optimization criteria

LLNL-PRES-806064
44Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Four of the top six most wanted features in Spack
were tied to the new concretizer

• Complexity of packages in Spack is increasing
– many more package solves require backtracking

than a year ago
– Many variants, conditional dependencies, special

compiler requirements

• More aggressive reuse of existing installs requires
better dependency resolution
– Need to be able to analyze how to configure the

build to work with installed packages

• Separate resolution of build dependencies also
requires a more sophisticated solver
– Makes the solve even more combinatorial
– Needed to support mixed compilers, version

conflicts between different package’s build
requirements

Part of milestone STED09-8

LLNL-PRES-806064
45Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Four of the top six most wanted features in Spack
were tied to the new concretizer

Part of milestone STED09-8

Started

Done for 0.17

Find the slides and associated scripts here:

spack-tutorial.readthedocs.io

We’ll resume at:
10:30am CST

We also have a chat room on Spack slack. Get an invite here:

slack.spack.io
Join the “tutorial” channel!

LLNL-PRES-806064
47Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Environments,
spack.yaml and spack.lock

Follow script at spack-tutorial.readthedocs.io

http://spack.rtfd.io/

LLNL-PRES-806064
48Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Hands-on Time: Configuration

Follow script at spack-tutorial.readthedocs.io

http://spack.rtfd.io/

Find the slides and associated scripts here:

spack-tutorial.readthedocs.io

We’ll resume at:
12:30pm CST

We also have a chat room on Spack slack. Get an invite here:

slack.spack.io
Join the “tutorial” channel!

LLNL-PRES-806064
50Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Hands-on Time: Creating Packages

Follow script at spack-tutorial.readthedocs.io

http://spack.rtfd.io/

LLNL-PRES-806064
51Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Hands-on Time:
Developer Workflows

Follow script at spack-tutorial.readthedocs.io

http://spack.rtfd.io/

Find the slides and associated scripts here:

spack-tutorial.readthedocs.io

We’ll resume at:
3:30pm CST

We also have a chat room on Spack slack. Get an invite here:

slack.spack.io
Join the “tutorial” channel!

LLNL-PRES-806064
53Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Hands-on Time:
Binary Caches and Mirrors

Follow script at spack-tutorial.readthedocs.io

http://spack.rtfd.io/

LLNL-PRES-806064
54Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Hands-on Time:
Stacks

Follow script at spack-tutorial.readthedocs.io

http://spack.rtfd.io/

LLNL-PRES-806064
55Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Hands-on Time:
Scripting

Follow script at spack-tutorial.readthedocs.io

http://spack.rtfd.io/

LLNL-PRES-806064
56Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

More Features
and the Road Ahead

LLNL-PRES-806064
57Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

cuda is a variant (build option)

cuda_arch is only present
if cuda is enabled

dependency on cuda, but only
if cuda is enabled

Conditional variants simplify packages

constraints on cuda version

compiler support for x86_64
and ppc64le

CudaPackage: a mix-in for packages that use CUDA

There is a lot of expressivity in this DSL.

58

• Not unlike other LLNL codes, but…

• MARBL is more deeply modular than prior codes
– Designed to support modular physics
– MARBL itself has two hydro options: Miranda & Blast
– Code, build structure both assume that a simulation

is comprised of packages

• Needed a way to simplify modular workflows
– Need to work on several repos at once
– Changes to the code are multiple pull requests

• LLNL doesn’t (likely won’t) use mono-repos
– Issues:

• Managing permissions
• Code timescales
• Independence of teams

• MARBL built MBS: a better poly-repo approach

We have recently introduced some new features to support the
development model of MARBL, an LLNL multi-physics code

Color Key
�First party

�Second party

�Third party

�system_library

marbl

blastmiranda

overlink

irep

leos

selene

quest exoopacity

leilak

rajaumpire

tribol

ransbox physicsutilssamrai

sundials

hdf5

conduit

silo

luajit

sina

blt

boost

tdfrng

axom

el4lupaascentmpi4py openssl readline

mfem

libunwind

camp

hypre lapack

zlib

nuclear

pythonvtkh

vtkm

devil_ray

metis

netcdf

sidre tls

apcomp

caliper

gotcha adiak

LLNL-PRES-806064
59Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

• Developer features so far have
focused on single packages

• spack dev-build, etc.

• New spack develop feature enables
development environments

• Work on a code
• Develop multiple packages from its

dependencies
• Easily rebuild with changes

• Builds on spack envirnoments
• Required changes to the installation

model for dev packages
• dev packages don’t change paths with

configuration changes
• Allows devs to iterate on builds quickly

spack develop lets developers work on many packages at once

60

• Users can now specify a full, 40-char git commit as a version
– Works in environments or on the command line

• This was tricky because we needed a way to compare a commit to a version
– MBS only needs to be able to fetch by commit, not compare
– Packages have conditional logic with versions
– We can compare versions to commits based on tags in a repository

• We developed an internal representation for commit versions
– Lexicographic tuple comparison:

(<version>, "", <commits since prior tag>)

– Comes before any <version>.x
– Allows commits to be compared by distance between versions.

We have added git versioning to Spack

$ spack install zlib @53ce2713117ef2a8ed682d77b944df991c499252

61

• First section is familiar
– List of packages with hashes

• spack.yaml ties the modular MARBL
code together:
– hashes
– parts of exo/build directory

• Some differences:
– Packages in Spack are configurable
– Can set per-package options
– Compiler options, flags are configurable

in Spack environments

• If this is too long, some of this can be
moved to external includes

Using git versioning, we've been able to support MARBL's
developer workflow

Current MARBL spack.yaml

MPI

BLAS/LAPACK

build
dependencies

package repos

compiler info

options,
versions/hashes

external
package prefs

62

Spack workflow for developer environment

$ git clone ssh://git@rzgitlab.llnl.gov:7999/mapp/mapp
$ cd mapp
$ spack env activate .
$ spack develop marbl@develop
$ spack develop blast@develop
$ spack develop miranda@develop
$ spack develop exo@develop
$ srun –N 2 –n 16 --exclusive spack install

MAPP

MIRANDABLAST EXOMARBL

. . .

spack.yaml

We can find ways to
shorten this

spack can do multi-node builds

spack.lock

Spack

63

• Users specify their constraints in spack.yaml
– The rest of configuration is automated by the concretizer
– The concretizer is a constraint solver that reconciles

package requirements with yours
– Details are beyond the scope of this presentation

• If you modify spack.yaml, you can either:
– Run spack install again (this concretizes before installing)
– Run spack concretize –-force to see the

concretized environment before installing (shown at right)

• spack.lock contains all the decisions the concretizer made:
– Versions
– Compilers, compiler versions
– Variant values
– Optional dependencies
– Target architecture

• Open question: how best to manage spack.lock files

Spack generates a spack.lock file that enables you to reproduce
the environment

Fully concretized MARBL environment

64

Future CI directions focus on scalability and testing

• Scaling tests up to handle every PR has been very difficult
– Driven by GitLab
– Using Kubernetes builders
– Using a cluster at U. Oregon

• Concretization of large environments was slowing turnaround
– 55 min to concretize E4S environment (each spec separately)
– Brought this down to 2.5 min with parallelization and caching

• Amazon and E4S/UO team helping to pinpoint errors

• We are now doing about 100,000 builds/month

• Once we have a stable, rolling release of spack develop branch,
we’ll make the build cache public
– Rolling binaries for develop
– Long-lived snapshots for each release

http://stats.e4s.io

65

Spack’s model lowers the maintenance burden
of optimized software stacks

Traditional OS
package manager

Recipe per
package configuration

(need rewrites for new systems)

Portable (unoptimized)
x86_64 binaries

One software stack
upgraded over timeBuild farm

Parameterized recipe
per package

(Same recipe evolves for all targets)
Build farm / CI

Optimized
Graviton2 binaries

Optimized
Skylake binaries

Optimized
GPU binaries

Many
software stacks

Built for specific:
Systems

Compilers
OS’s
MPIs
etc.

Spack

Users/developers can also build directly from source

66

Spack’s long-term strategy is based around
broad adoption and collaboration

• Not sustainable without a community
– Broad adoption incentivizes contributors
– Cloud resources and automation absolutely necessary

• Spack preserves build knowledge in a
cross-platform, reusable way
– Minimize rewriting recipes when porting

• CI ensures builds continue to work as packages
evolve
– Keep packages flexible but verify key configurations

• Any suggestions on sustainability models would
be appreciated!

Spack
Community

LLNL-PRES-806064
67Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ We need deeper modeling of compilers to handle
compiler interoperability
— libstdc++, libc++ compatibility
— Compilers that depend on compilers
— Linking executables with multiple compilers

§ First prototype is complete!
— We’ve done successful builds of some packages using

compilers as dependencies
— We need the new concretizer to move forward!

§ Packages that depend on languages
— Depend on cxx@2011, cxx@2017, fortran@1995, etc
— Depend on openmp@4.5, other compiler features
— Model languages, openmp, cuda, etc. as virtuals

Spack 0.18 Roadmap: compilers as dependencies

1

intel@17

gcc@xxx

B

R

2

intel@16

B

gcc@4.9.3

R

L

Already-installed dep

Compiler-imposed dep

libstdc++

L
L

Compilers and runtime libs fully modeled
as dependencies

68

Separate concretization of build dependencies

• We want to:
– Build build dependencies with the "easy" compilers
– Build rest of DAG (the link/run dependencies) with the

fancy compiler

• This required significant concretizer modifications

• Gets into issues like bootstrapping

1

2 5

3 4

B

B

76

L

8

R

BL

B: build L: link R: run

spack install pkg1 %intel

Easy compiler

Fancy compiler

1

2 5

3 4

B

B

76

L

8

R

BL

B

R

69

Human-generated constraints

Ongoing research:
BUILD is a 3-year research project, started at LLNL in 2020

• Basic premise: humans can’t generate all the
compatibility constraints
– Version ranges, conflicts, in Spack packages not precise
– rely on maintainers to get right.

• BUILD aims to understand software compatibility at the
binary level
– Develop ABI compatibility models
– Enable automatic and ABI-compatible reuse of system

binaries, foreign binary packages

• WIP: better dependency solvers can enable users to
solve around system dependencies
– find “closest” match to a prior build, using new packages
– Reproduce a prior build with new requirements

mpileaks
version=v1

mpi
version=v2

callpath
version=v3

dyninst
version=v4

libelf
version=v5

libdwarf
version=v6

Resolved
ABI-compatible

Graph

Solver

B version v2, defines t2

f(t1) g(t1, t2)

h(t3) i(t1, t3)

Compatibility Models

70

• We are looking at longer-term sustainability directions after
ECP

• Opportunities (everything is in flux at this point):
– ASCR Workshop on the Science of Scientific-Software

Development and Use
• just came out

– Leadership Scientific Software Meeting series
https://lssw.io

• We want to be part of any post-ECP sustainability effort!
– Likely some type of work in conjunction with E4S

After ECP

https://lssw.io/

LLNL-PRES-806064
71Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

§ There are lots of ways to get involved!
— Contribute packages, documentation, or features at github.com/spack/spack
— Contribute your configurations to github.com/spack/spack-configs

§ Talk to us!
— You’re already on our Slack channel (spackpm.herokuapp.com)
— Join our Google Group (see GitHub repo for info)
— Submit GitHub issues and pull requests!

Join the Spack community!

@spackpm

We hope to make distributing & using HPC software easy!

github.com/spack/spack
Star us on GitHub! Follow us on Twitter!

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

