Managing HPC Software Complexity
with Spack

: : SC21 Full-day Tutorial
The most recent version of these slides can be found at: Nov 14, 2021

https://spack-tutorial.readthedocs.io

LLNL-PRES-806064

e S e e Tl spa ck.io M Lawrence Livermore

Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

National Laboratory

https://spack.readthedocs.io/en/latest/tutorial.html

Tutorial Materials

Find these slides and associated scripts here:

spack-tutorial.readthedocs.io

We will also have a chat room on Spack slack.
You can join here:

slack.spack.io

Join the “tutorial” channel!

We will monitor the chat during the tutorial, but we'll also
help in person. You can ask questions here after
the conference is over.

@ Spack

latest

Main Spack Documentation

Basic Installation Tutorial
Configuration Tutorial
Package Creation Tutorial

Developer Workflows Tutorial

& Read the Docs

latest sc18 scl7 sclé rikenl9
pearcl9 nsfl9 lanl19 isc19 ecpl9

HTML

E Project Home Builds Downloads

{ View Edit

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

LLNL-PRES-806064

Docs » Tutorial: Sp

Tutorial: S

This is a full-day int
Practice and Experi
2019.

You can use these r
and read the live de

Slides

Practice and Experi
Chicago, IL, USA.

Live Demos

We provide scripts
sections in the slide

1. We provide 1
tutorial on y«
the containe

2. When we hc
unfamiliar wi

You should now be

® -

Tutorial Presenters

In person:

Adam Stewart
UliuC

Greg Becker RobertBlake ~ Massimiliano Culpo TamaraDahigren Peter Scheibel, 'S*tzrprgﬁa';
LLNL np-complete, S.r.l. LLNL cses
Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

LLNL-PRES-806064

»

Agenda (times may change)

Intro
Basics
Concepts

Morning Break
Environments
Configuration
Lunch
Packaging
Developer Workflows

Afternoon Break
Mirrors
Stacks
Scripting
Roadmap

Join #tutorial on Slack: slack.spack.io

LLNL-PRES-806064

8:00-8:30
8:30-9:15
9:15-10:00
10:00 — 10:30

10:30-11:15
11:15-12:00

12:00-1:30
1:30-2:15
2:15-3:00
3:00-3:30
3:30-3:50
3:50-4:15
4:15 - 4:40
4:40-5:00

Materials: spack-tutorial.readthedocs.io

Modern scientific codes rely on icebergs of dependency libraries

71 packages
188 dependencies

MFEM: LBANN: Neural Nets for HPC

—

fate] NS

,,,,, = 31 packages,
69 dependencies

([

A y e
A = S—

T
Y sExt
':ﬁﬁ.-ag‘!k-ﬁum,{"‘gh
[AN \ ‘

r-condop: ‘ e IS
R Genome Data Analysis Tools

] T

YN

N

Some fairly common (but questionable) assumptions
made by package managers (conda, pip, apt, etc.)

= 1:1 relationship between source code and binary (per platform)
— Good for reproducibility (e.g., Debian)
— Bad for performance optimization

= Binaries should be as portable as possible
— What most distributions do
— Again, bad for performance

= Toolchain is the same across the ecosystem

— One compiler, one set of runtime libraries
— Or, no compiler (for interpreted languages)

Outside these boundaries, users are typically on their own

High Performance Computing (HPC)
violates many of these assumptions

= Code is typically distributed as source

— With exception of vendor libraries, compilers
P P Current

= Often build many variants of the same package Oak Ridge National Lab
— Developers’ builds may be very different Power9 / NVIDIA
— Many first-time builds when machines are new

Fujitsu/ARM a64fx

= Code is optimized for the processor and GPU -
— Must make effective use of the hardware Upcoming | S&7%

— Can make 10-100x perf difference Lawrence Berkeley el
: Argonne National Lab
National Lab Intel Xeon / X
AMD Zen / NVIDIA niel reon/ ze

= Rely heavily on system packages
— Need to use optimized libraries that come with machines

— Need to use host GPU libraries and network
FRONTIER
= Multi-language

— G, C++, Fortran, Python, others Oak Ridge National Lab | awrence Livermore
all in the same ecosystem AMD Zen / Radeon National Lab
AMD Zen / Radeon

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 7

LLNL-PRES-806064

What about containers?

= Containers provide a great way to reproduce and distribute an
already-built software stack

= Someone needs to build the container!
— This isn’t trivial
— Containerized applications still have hundreds of dependencies

= Using the OS package manager inside a container is insufficient
— Most binaries are built unoptimized
— Generic binaries, not optimized for specific architectures

= HPC containers may need to be rebuilt to support many .
different hosts, anyway. 00°
— Not clear that we can ever build one container for all facilities Charliecloud
— Containers likely won’t solve the N-platforms problem in HPC

We need something more flexible to build the containers

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 8
LLNL-PRES-806064

Spack enables Software distribution for HPC

» Spack automates the build and installation of scientific software

* Packages are parameterized, so that users can easily tweak and tune configuration

No installation required: clone and go

$ git clone https://github.com/spack/spack
$ spack install hdf5

Simple syntax enables complex installs

$ spack install hdf5@1.10.5 $ spack install hdf5@1.10.5 cppflags="-03 —g3"
$ spack install hdf5@1.10.5 %clang@6.0 $ spack install hdf5@1.10.5 target=haswell
$ spack install hdf5@1.10.5 +threadssafe $ spack install hdf5@1.10.5 +mpi “mpich@3.2

* Ease of use of mainstream tools, with flexibility needed for HPC

* In addition to CLI, Spack also:
* Generates (but does not require) modules
« Allows conda/virtualenv-like environments

* Provides many devops features (Cl, container generation, more)

Join #tutorial on Slack: slack.spack.io

LLNL-PRES-806064

Materials: spack-tutorial.readthedocs.io

O github.com/spack/spack

What'’s a package manager?

= Spack is a package manager

— Does not a replace Cmake/Autotools Package m:::g:z 52;‘;?\%2;23"?2?:{%23hip3
— Packages built by Spack can have any Manager » May drive package-level build systems

build system they want

= Spack manages dependencies High Level sy

— Drives package-level build systems Build - Handle library abstractions
— Ensures consistent builds System » Generate Makefiles, etc.

= Determining magic configure lines

takes time Low Level [RyHsgres

— Spackis a cache of recipes BLI"d * Handles dependencies among
System commands in a single build

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 10
LLNL-PRES-806064

Who can use Spack?

People who want to use or distribute software for HPC!

1. End Users of HPC Software
— Install and run HPC applications and tools

2. HPC Application Teams
— Manage third-party dependency libraries

3. Package Developers
— People who want to package their own software for distribution

4. User support teams at HPC Centers
— People who deploy software for users at large HPC sites

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

LLLLLLLLLLLLLLLL

The Spack community is constantly growing! 6,000+ software packages
930+ contributors

Package contribution rate
remained steady in 2021

Contributions (lines of code) over time in packages, by organization

160000 4 LLNL . RIT = RIKEN
ANL/UIUC s unknown B 3vGeomatics
140000 A lowa ANL N FAU
lowa State CERN CsCs
120000 + Hisilicon Hamburg mEE CEA
N EPFL AMD Fuijit:
(’i‘x 100000 oy L ANL = ORNL - outjrln:ru
80000 -
60000
40000
20000
0 T T T
@00 '19\?‘ m@f’ ’\9\/&) ’\9\'« '19\'% @0@ '1,&Q '19’9
Monthly active users
All time high of 4,688
monthly active users this October
Wy
Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 12

LLNL-PRES-806064

Spack has gained adoption rapidly (if stars are an indicator)

GitHub stars over time

spack
singularity

chape

openmpi

openhpc
easybuild (all 4 repos)
mpich
charliecloud
1000 - reframe
kokkos
mfem

500 - raja

2000 A

1500 A

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

YW Star Spack at github.com/spack/spack if you like the tutorial!

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 13
LLNL-PRES-806064

Spack is critical for ECP’s mission to create a
robust, capable exascale software ecosystem.

%0 & P e
5 ENERGY r'l'ﬁyjl‘ FHEn - o

https://eds.io

Dependents by Producer

EXASCALE COMPUTING PROJECT
= Spack will be used to build software for the three upcoming

6

5

4

U.S. exascale systems 3 I I I I I
: i i l 11l
£ ™ & L > & o+ (s & & K & & N o @ & ®
R AP G S I IO P S SN
aCritical D¢ = Important De D

= ECP has built the Extreme Scale Scientific Software Stack (E4S) ‘
with Spack — more at https://e4s.io

= Spack will be integral to upcoming ECP testing efforts. Spack is the most depended-upon
project in ECP

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 15
LLNL-PRES-806064

https://e4s.io/

One month of Spack development is pretty busy!

October 12, 2021 — November 12, 2021

LLNL-PRES-806064

Overview

>
671 Active Pull Requests

- 536 11135
Merged Pull Requests Open Pull Requests

Excluding merges, 173 authors have pushed 571 commits to
develop and 634 commits to all branches. On develop, 703
files have changed and there have been 20,730 additions
and 3,807 deletions.

Period: 1 month ~

145 Active Issues

©75 ©70

Closed Issues New Issues

80

60

40
0 [-

L1 RAEER LA "EERNERES

© 1 Release published by 1 person

© v0.17.0
published 7 days ago

$~ 536 Pull requests

Join #tutorial on Slack: slack.spack.io

merged by 151 people

Materials: spack-tutorial.readthedocs.io

Spack’s widespread adoption has made it a de facto standard,
drawing contribution and collaboration from many vendors

LLNL-PRES-806064

AWS invests in cloud credits for Spack build farm
— Joint Spack tutorial in July with AWS had 125+ participants

— Joint AWS/AHUG Spack Hackathon drew 60+ participants aWS AM D a

AMD has contributed ROCm packages and compiler support
— 55+ PRs mostly from AMD, also others

— ROCm, HIP, aocc packages are all in Spack now ;i n tel)

Intel contributing OneApi support and licenses for our build farm @D!

NVIDIA contributing NVHPC compiler support and other features QIVVIDIA.

Fujitsu and RIKEN have contributed a huge number of packages a r m

for ARM/ab4fx support on Fugaku Linaro
ARM and Linaro members contributing ARM support , FUél)TSU
— 400+ pull requests for ARM support from various companies]

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 17

Spack is not the only tool that automates builds

1. “Functional” Package Managers

A B - — Nix https://nixos.org/
A v — GNU Guix https://www.gnu.org/s/guix/
X Guix
, 2. Build-from-source Package Managers
N (] .
a'\' b — Homebrew, LinuxBrew http://brew.sh
.i] .ﬂ — MacPorts https://www.macports.org
VAR — Gentoo https://gentoo.org
N

\/ Other tools in the HPC Space:

= Easybuild http://hpcugent.github.io/easybuild/
— Aninstallation tool for HPC
— Focused on HPC system administrators — different package model from Spack
— Relies on a fixed software stack — harder to tweak recipes for experimentation

= Conda https://conda.io

& — Very popular binary package manager for data science
bON DA — Not targeted at HPC; generally has unoptimized binaries

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 18
LLNL-PRES-806064

https://nixos.org/
https://www.gnu.org/s/guix/
http://brew.sh/
https://www.macports.org/
https://gentoo.org/
http://hpcugent.github.io/easybuild/
https://conda.io/

Hands-on Time: Spack Basics

Follow script at spack-tutorial.readthedocs.io

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

http://spack.rtfd.io/

LLNL-PRES-806064

Core Spack Concepts

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Most existing tools do not support combinatorial versioning

= Traditional binary package managers
— RPM, yum, APT, yast, etc.
— Designed to manage a single stack.
— Install one version of each package in a single prefix (/usr).
— Seamless upgrades to a stable, well tested stack

= Port systems
— BSD Ports, portage, Macports, Homebrew, Gentoo, etc.
— Minimal support for builds parameterized by compilers, dependency versions.

= Virtual Machines and Linux Containers (Docker)
— Containers allow users to build environments for different applications.
— Does not solve the build problem (someone has to build the image)
— Performance, security, and upgrade issues prevent widespread HPC deployment.

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

LLNL-PRES-806064

Spack handles combinatorial software complexity

Dependency DAG
/ mpi
mpileaks ~——a] / libdwarf
callpath — ot 4 ninst — \: libelf

Installation Layout

opt

L— spack

— darwin-mojave-skylake

I
I
I
I
I
|_
I
I

L— clang-10.0.0-apple
F— bzip2-1.0.8-hc4sm4vuzpméznmvrfzridowZmkpheZe
F— python-3.7.6-daqqpssxb6gbfrztsezkmhus3xoflbsy
F— sqlite-3.30.1-ub4v26igxvxyn23hysmklfums6tgjv5r
F— xz-5.2.4-u5eawkvaoc7vonabe6nndkcfwuv233cj
L— z1ib-1.2.11-x46g4wm46ay4pltriijbgizxjrhbaka6
darwin-mojave-x86_64
L— clang-10.0.0-apple
L— coreutils-8.29-pl2kcytejqcysSdzecfrtjgxfdssvnob

LLNL-PRES-806064

Join #tutorial on Slack: slack.spack.io

Materials: spack-tutorial.readthedocs.io

Each unique dependency graph is a
unique configuration.

Each configuration in a unique directory.
— Multiple configurations of the same
package can coexist.

Hash of entire directed acyclic graph
(DAG) is appended to each prefix.

Installed packages automatically find

dependencies

— Spack embeds RPATHs in binaries.

— No need to use modules or set
LD_LIBRARY_PATH

— Things work the way you built them

@22

Spack Specs can constrain versions of dependencies

mpileaks

/ mpi
/ libdwarf

T
11path _—W
COLEPAtN — Gyninst libelf

$ spack install mpileaks %intel@12.1 Alibelf@0.8.12

= Spack ensures one configuration of each library per DAG

— Ensures ABI consistency.
— User does not need to know DAG structure; only the dependency names.

= Spack can ensure that builds use the same compiler, or you can mix

LLNL-PRES-806064

— Working on ensuring ABI compatibility when compilers are mixed.

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack handles ABl-incom

patible, versioned interfaces like MPI

mpileaks

mpi

callpath

libdwarf
/' \
—P

B dyninst libelf

= mp1 is a virtual dependency

= |nstall the same package built with two different MPI implementations:

$ spack install mpileaks Amvapich@l.9

$ spack install mpileaks Aopenmpi@l.4:

= Let Spack choose MPIl implementation, as long as it provides MPI 2 interface:

$ spack install mpileaks Ampi@2

Join #tutorial on Slack: slack.spack.io

LLNL-PRES-806064

Materials: spack-tutorial.readthedocs.io

Concretization fills in missing configuration details

when the user is not explicit.

mpileaks ~callpath@l.0+debug ~libelf@0.8.11

mpileaks

\

callpath@l.o
+debug

.

@ aZI[ewIoN

mpi

dyninst

\

Concretize

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

\

callpath@l.o
%gcc@a4.7.3+debug
=linux-ppc64

L\

libdwarf

/

libelf@0.8.11

mpich@3.0.4 dyninst@s. 1.2 Store
%gcc@4.7.3 %gcc@4.7.3
=linux-ppc64 =linux-ppc64

libdwarf@20130729

%gcc@4.7.3
=linux-ppc64

/

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

Abstract, normalized spec
with some dependencies.

Join #tutorial on Slack: slack.spack.io

LLNL-PRES-806064

Concrete spec is fully constrained
and can be passed to install.

Materials: spack-tutorial.readthedocs.io

User input: abstract spec with some constraints

spec.yaml

spec:
- mpileaks:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2
dependencies:

adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
callpath: bah5f4h4d2n47mgycej2mtrnrivvxy77

mpich: aa4ar6ifj23yijgmdabeakpejcliz2t3
hash: 33hjjhxi7p6gyznSptgyes7sghyprujh
variants: {}
version: '1.0'
- adept-utils:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2
dependencies:
boost: teesjv7ehpeSksspjim5dk43a7gnowlq
mpich: aa4ar6ifj23yijgmdabeakpejcliz2t3
hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
variants: {}
version: 1.0.1
- boost:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2
dependencies: {}
hash: teesjv7ehpeSksspjim5dk43a7gnowlq
variants: {}
version: 1.59.0

Detailed provenance is stored

with the installed package

@25

Use ‘spack spec’ to see the results of concretization

$ spack spec mpileaks
Input spec

mpileaks

Concretized
mpileaks@l.0%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Aadept-utils@1.0.1%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Aboost@1.61.0%gcc@5.3.0+atomic+chrono+date_time~debug+filesystem~graph
~icu_support+iostreams+locale+log+math~mpi+multithreaded+program_options
~python+random +regex+serialization+shared+signals+singlethreaded+system
+test+thread+timer+wave arch=darwin-elcapitan-x86_64
Abzip2@1.0.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Az1ib@1.2.8%gcc@®5.3.0 arch=darwin-elcapitan-x86_64
Aopenmpi@2.0.0%gcc@5. 3. 0~mxm~pmi~psm~psm2~slurm~sqlite3~thread_multiple~tm~verbs+vt arch=darwin-elcapitan-x86_64
Ahwloc@1.11.3%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Alibpciaccess@d.13.4%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Alibtool@2.4.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Am4@1.4.17%gcc@5.3.0+sigsegv arch=darwin-elcapitan-x86_64
Alibsigsegv@?.10%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Acallpath@l.0.2%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Adyninst@9.2.0%gcc@5.3.0~stat_dysect arch=darwin-elcapitan-x86_64
Alibdwarf@20160507%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Alibelf@0.8.13%gcc@5.3.0 arch=darwin-elcapitan-x86_64

LLNL-PRES-806064

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 26

Spack builds each package in its own compilation environment

Spack
Process

do_install()

Install dep1 Install dep2 TR Install package

e e e e e e e e e e e e =

Build
Process

Set up environment

CC

CXX
F77

FC

spack/env/spack-cc SPACK_CC
spack/env/spack-c++ SPACK_CXX
spack/env/spack-f77 SPACK_F77
spack/env/spack-f90 SPACK_FC

PATH = spack/env:$PATH
CMAKE_PREFIX_PATH
LIBRARY_PATH

install(Q)

1
1
1
1
1
1
1
1
1
1
1
: PKG_CONFIG_PATH
1
1
1
1
1
1
1
1
1
1

LLNL-PRES-806064

/opt/ic-15.1/bin/icc

/opt/ic-15.1/bin/icpc
/opt/ic-15.1/bin/ifort
/opt/ic-15.1/bin/ifort -I /depl-prefix/include

= Forked build process isolates environment for each build.
Uses compiler wrappers to:
— Addinclude, lib, and RPATH flags
— Ensure that dependencies are found automatically
— Load Cray modules (use right compiler/system deps)

| Compiler wrappers
(spack-cc, spack-c++, spack-f77, spack-f90)

-L /depl-prefix/lib
-W1,-rpath=/depl-prefix/lib

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Extensions and Python Support

= Spack installs each package in its own prefix

= Some packages need to be installed within directory structure of other packages
— i.e., Python modules installed in Sprefix/lib/python-<version>/site-packages
— Spack supports this via extensions

class PyNumpy(Package):

"""NumPy is the fundamental package for scientific computing with Python."""
"https://numpy.org"
= "https://pypi.python.org/packages/source/n/numpy/numpy-1.9.1.tar.gz"
version('1.9.1", ' 78842b73560ec378142665e712ae4ad9’)

homepage

extends('python’)

def install(self, spec, prefix):
setup_py("install®, "--prefix={0}".format(prefix))

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

LLNL-PRES-806064

Spack extensions

= Some packages need to be installed within
directory structure of other packages

= Examples of extension packages:
— python libraries are a good example
— R, Lua, perl
— Need to maintain combinatorial versioning

$ spack activate py-numpy @1.10.4

= Symbolic link to Spack install location

= This is an older feature — we are encouraging

users to use spack environments instead
— More on this later!

LLNL-PRES-806064

spack/opt/
linux-rhel6-x86_64/
gcc-4.7.2/
python-2.7.12-6y6ovvaw/
1ib/python2.7/site-packages/

py—nﬁﬁpy—1.10.4—oaxix36/
1ib/python2.7/site-packages/
numpy/

spack/opt/
1inux-rhel6-x86_64/
gcc-4.7.2/
python-2.7.12-6ybvvaw/
1ib/python2.7/site-packages/
numpy@
py-numpy-1.10.4-oax1x36/
1ib/python2.7/site-packages/
numpy/

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Building against externally installed software

mpileaks @2.3
gcc@4.7.3 mpileaks @2.3
arch=linux-redhat 6-ppc64 gcc@4.7.3
arch=linux-redhat 6-ppc64

mpileaks ~callpath@l.0+debug
~openmpi ~libelf@0.8.11

callpath@1.0 callpath@1.0
gcc@4.7.3 gcc@4.7.3
arch=linux-redhat 6-ppc64 arch=linux-redhat 6- ppc64
+debug +debug

N AN

openmpi@2.0.0 dyninst @8.1.2 openmpi@2.0.0 dyninst @8.1.2

packages . yaml gcc@4.7.3 Gcc@d.73 gcc@4.7.3 gcc@4.7.3

arch=linux-redhat 6- ppc64 arch=linux-redhat 6- ppc64 arch=linux-redhat 6-ppc64 arch=linux-redhat6-ppc64

ackages: ‘ —

’ mpig:a Oy = — = i- - . odwarf ©20130729
buildable: False d iy ot s archolinox-radhace-ppc6a
paths . arch=linux-redhat 6-ppc64 arch=linux-redhat 6-ppc64

openmpi@®2.0.0 %gcc@4.7.3 arch=linux-rhel6-ppc64:
/path/to/external/gcc/openmpi-2.0.0 / libelf@0.8.11
gcc@4.7.3

openmpi@l1.10.3 %gcc@4.7.3 arch=1linux-rhel6-ppc64: Tbpciaccess G0.13.4 Tbelf 308 11
/path/to/external/gcc/openmpi-1.10.3 gcc@4.7.3 gcc@4.7.3

arch=linux-redhat 6-ppc64 arch=linux-redhat 6-ppc64

arch=linux-redhat 6-ppc64

v

/path/to/external/gcc/openmpi-2.0.0

libtool@2.4.6
gcc@4.7.3
arch=linux-redhat 6-ppc64

Users register external packages in a
configuration file (more on these later).

mieLTT Spack prunes the DAG when adding external packages.

arch=linux-redhat 6- ppc64

libsigsegv @2.10
gcc@4.7.3
arch=linux-redhat 6-ppc64

@30

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

LLNL-PRES-806064

Spack package repositories

= Spack supports external package $ spack repo create /path/to/my_repo
repositories $ spack repo add my_repo
— Separate directories of package recipes $ spack repo list
==> 2 package repositories.
= Many reasons to use this: my_repo /path/to/my_repo

_ Some packages can’t be released publicly builtin spack/var/spack/repos/builtin

— Some sites require bizarre custom builds
— Override default packages with site-
specific versions

my_repo
proprietary packages, pathological builds

= Packages are composable:
— External repositories can be layered on

top of the built-in packages spack/var/spack/repos/builtin
— Custom packages can depend on built-in
packages (or packages in other repos) “standard” packages in the spack mainline.

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ Sl

LLNL-PRES-806064

Spack mirrors

Original source

on internet EE—
= Spack allows you to define mirrors: \\
= Directories in the filesystem ‘\
= Onaweb server \ S3 Bucket

= |n an S3 bucket \

Mirrors are archives of fetched tarballs, repositories, @

|
1
|
|
and other resources needed to build \ |

= Can also contain binary packages]

. @ .

\

By default, Spack maintains a mirror in \ |l é

var/spack/cache of everything you’ve fetched so far. \ !

You can host mirrors internal to your site Local Cache @ g Spack
= See the documentation for more details users

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 32

LLNL-PRES-806064

Spack environments enable users to build customized stacks
from an abstract description

Simple spack.yaml file

_ﬁ-'— d Dependency

mstall

spack. yamI file W|th
names of required
dependencies

- packages
build
project

Lockfile describes
exact versions installed

= spack.yaml describes project requirements

= spack.lock describes exactly what versions/configurations
were installed, allows them to be reproduced.

= Can also be used to maintain configuration together with
Spack packages.
— E.g., versioning your own local software stack with consistent

compilers/MPI implementations

— Allows developers and site support engineers to easily version

Spack configurations in a repository

LLNL-PRES-806064

Join #tutorial on Slack: slack.spack.io

Materials: spack-tutorial.readthedocs.io

spack:
include external configuration
include:
- ../special-config—-directory/
- ./config-file.yaml

add package specs to the “specs” list

specs:
- hdf5

- libelf
— openmpi

Concrete spack.lock file

"concrete_specs": {

"hdf5": {

"version": "1.10.5",

"arch": {
"platform": "darwin",
"platform_os": "mojave",
"target": "x86_64"

I

"compiler": {
"name": "clang",

I
"namespace": "builtad

_—

"6s63s02kstp3zyviezglndmavy61l3nul”:

"version": "10.0.0-apple"

generated

{

Environments have enabled us to add build many features to

support developer workflows

class Cmake(Package):
executables = ['cmake']

spack external find

Automatically find and configure external packages on the system

@classnethod
def determine_spec_details(cls, prefix, exes_in_prefix):
exe_to_path = dict(
(0s.path.basename(p), p) for p in exes_in_prefix
)
if 'cmake' not in exe_to_path:
return None

cmake = spack.util.executable.Executable(exe_to_path['cmake'])
output = cmake('--version', output=str)
if output:
match = re.search(r cmake.version\s+(\S+)*, output)
if match:
version_str = match.group(1)
return Spec(cmake@{@}' . format (version_str))

packages:
cmake:
externals:
- spec: cmake@3.15.1
prefix: /usr/local

spack test

package.py spack.yaml conﬁguration Packages know how to run their own test suites

spack ci

Automatically generate parallel build pipelines
(more on this later)

.gitlab-ci.yml Cl
pipeline

spack containerize

Turn environments into container build recipes
spack.yaml

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

LLNL-PRES-806064

clasg Libsi 9e):
""TGNU [ibsigsegv is a Library for handling page faults in user mode."""
... spack package contents ...
extra_install_tests - ‘tests/.libs’
def test(self):
data_dir = self test_sulte, current_test data_dir
stoke_test_c = data_dir. JoinC' soke_test.c’)
self.run_test(
‘e, [

1-1%s' % self.prefix.include

Tl%s' % self prefix.lib, '-lsigseqv’,
smoke_test_c,

"-0', 'smoke test'

1
purpose="check linking’)

Self, run_test(
ismoke_test’, [], data_dir.join('smoke_test.out’),
purpose="run built smoke test’)

self.run_test('sigsegvi': ['Test passed’], purpose='check sigsegvl output’)
self.run_test('sigsegv2': ['Test passed’], purpose='check sigsegv2 output’)

package.py

E4S is ECP’s curated, Spack-based software distribution

spack:

specs:
— openpmd-api - adios - gotcha
- py-libensemble”python@3.7.3 - darshan-runtime - caliper
E4 - - t t k k - hypre - darshan-util - papi
° S f S g - nf - vel - py-jupyterhub
Is jus a se o pac pac a es - rEr?{linos@lz.14.1+dtk+intrepidZ+shards - ‘sliroC - s)f/p]upy e
. = = = dial - 1lel-netcdf =
- 60+ packages (297 including dependencies) - strumpack B
. - — superlu-dist — papyrus@develop - rempi
- Growing to include all of ST and more - superty - bots - ninja
- tasmanian - raja — kokkos-kernels
- mercury - upcxx #- turbine
- hdf5 - kokkos+openmp #- aml
H . - adios2 — openmpi #- unifyfs
L Users Can Insta” E4S paCkageS. - dy:inst - umpirel #- fl;csif»cinch
. . - pdt - libquo #- petsc
—_ - tau - globalarrays #- faodel
In their home directory SR
H k 2
- In a container i
providers:
mpi: [spectrum-mpil

target: [ppc64le]

 Facilities can install E4S packages:
- On bare metal ;zgzzzéiﬂ[]l.o;:;faﬂd /10.1.243
- In a container P heildabte: false
a2
agug modules:
e Users and facilities can choose parts they want oy T PIEL0 31,25 SpECtrUn-ApA/10.3.1. 220208121

misc_cache: $spack/cache
build_stage: $spack/build-stage
install_tree: $spack/$padding:512

- spack install only the packages you want
- Orjust edit the list of packages (and configurations) you
want in a spack.yaml file

view: false
concretization: separately|

Actual E4S manifest (spack.yaml) for OLCF Ascent

More on E4S at https:lle@.io%

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

LLNL-PRES-806064

https://e4s.io/

. c/o Robert Blak
The AML team has used Spack environments to accelerate

their workflow

spack:
| specs:
A o
= LLNL Applied ML team needed to deploy ovany
— PyTorch + Kull development environment i
— On ppcb64le with system MPI provigers:
{0222E1ch2@2.3
glgg?nblas threads=openmp
u Before SpaCk bu{IEZETZ}aiFE:r‘eads:openmp
— Everybody built from scratch varionts: [-cuda cuds_arch-37]
— People wrote scripts and passed them around byinon:
. . . version: [3.8.6]
— Days were spent trying to debug build differences cua
043011 1-1inux-x64
py-tpr‘ch: e
| | After Spack mng%EEE?l?‘+EUdO +distributed
— Versioned reproducible spack environments in a git repo e miapich2e2.3. 1gcce?.3.0.
. . . prefix: /usr/tce/packages/mvapich2/mvapich2-2.3-gcc-7.3.0
— Standard environments in a shared team directory compilers:
— Team members can set up a customizable cperating.systen: rhel7
environment in ~20 minutes. St Ve e packageesacetacer 3 oybingges
* Change python version, PyTorch version on the fly ” 1T
 Leverage binary caches to avoid redundant builds. Spack.yaml fie

We wanted to translate this workflow to larger codes.

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io D 36

LLNL-PRES-806064

Spack environments are the foundation of Spack Cli

= spack ci enables any environment to be
turned into a build pipeline

= Pipeline generates a .gitlab-ci.yml file
from spack.lock

= Pipelines can be used just to build, or to
generate relocatable binary packages i

es
url: https://cdash.spack. io
: Spack

— Binary packages can be used to keep the same BT L
build from running twice

Parallel GitLab build pipeline

spack.yaml

Same repository used for spack.yaml can
generate pipelines for project

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 37
LLNL-PRES-806064

We have expanded our Cl builds to trigger on pull requests, allowing us to do Cl in the cloud
for LLNL open source projects

O Spack Contributions V/ gitlab.spack.io ‘/_v X ipelines in AWS
on GitHub ™., AE—
e 2 ' J ppc64le pipelines at
E J U. Oregon

¢ d . .
spack ci 4 Plpellrztralz‘?vt) LLNL

spa;k.ya_ml GitLab CI builds (changed) packages
v @ ci/gitlab/gitlab.spack.io — Pipeline passed on GitLab ' Conflguratlon . On every pU” request

* On every release branch
« Different compilers (Intel soon!)

. ye\'l(v security model supports untrusted contributions from
orks

- Sandboxed build caches for test builds
— Authoritative builds on mainline only after approved merge

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 38

LLNL-PRES-806064

Spack v0.17.0 was just released!

Major new features:

LLNL-PRES-806064

1.

©oONDUAWN

New Concretizer is now default

Binary bootstrapping enables us to get up and running fast
spack install --reuse aggressively reuses installed packages
Improved error messages

Conditional variants for more expressive packages

Git commit versioning

Overrides for default config directories

Improvements to spack containerize

New commands for querying packages and tests by tag

5,969 packages (920 added since 0.16)

Full release notes: https://qgithub.com/spack/spack/releases/tag/v0.17.0

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

https://github.com/spack/spack/releases/tag/v0.17.0

Package solving is combinatorial search with
constraints and optimization This problem is NP-hard!

= Search over a solution space:
— Possible dependency graphs (nodes, edges)
— Assignment of node and edge attributes
Version
Dependency, dependency type
Compiler, compiler version

Target
Compiler, compiler version

= Subject to validity constraints:
— Version requirements
— Target/compiler compatibility
— Virtual providers

= QOptimization picks “best” among valid solutions:
— Most recent versions
— Preferred variant values
— Preferred compilers that support best targets (e.g., AVX-512)
— Minimize number of builds

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 40
LLNL-PRES-806064

High level view of a Spack package build

Contributors r .
L.»Q:J \ 6 i new versions .

* new dependencies
* new constraints

(@)

— 75

package.py repository

spack default config
developers packages . yaml
admins, local preferences config
users packages.yaml
s . .

USETS local environment config
spack.yaml

Users Command line constraints
spack install hdf5@1.12.0 +debug

Join #tutorial on Slack: slack.spack.io

LLNL-PRES-806064

Materials: spack-tutorial.readthedocs.io

>@ concretizer
=

_

||||||

nnnnnn

Concrete spec is
fully constrained
and can be built.

The new concretizer is now defaultin 0.17

LLNL-PRES-806064

New concretizer leverages Clingo (see potassco.org)

Clingo is an Answer Set Programming (ASP) solver
— ASP looks like Prolog; leverages SAT solvers for speed/correctness
— ASP program has 2 parts:

1. Large list of facts generated from our package repositories and config
- 20,000 — 30,000 facts is typical — includes dependencies, options, etc.

2. Small logic program (~800 lines), including constraints and optimization
criteria

New algorithm on the Spack side is conceptually simpler:

— Generate facts for all possible dependencies, send to logic program
— Optimization criteria express preferences more clearly
— Build a DAG from the results

New concretizer solves many specs that current concretizer can’t
— Backtracking is a huge win — many issues resolved

— Currently requires user to install clingo with Spack

— Solver will be automatically installed from public binaries in 0.17.0

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Some facts for the HDF5 package

42

With and without reuse optimization

Note the bifurcated
ptimization criteria

spackle):solver: solve -I1 hdf5
Best of 9 considered solutions.
==> Optimization Criteria:

Priority Criterion Installed ToBuild
number of packages to build (vs. reuse) = 20
deprecated versions used o 0
version weight
number of non-default variants (roots)
preferred providers for roots
default values of variants not being used (roots)
number of non-default variants (nhon-roots)
preferred providers (non-roots)
compiler mismatches
0S mismatches
non-preferred 0S's
version badness
default values of variants not being used (non-roots)
non-preferred compilers
target mismatches
non-preferred targets

spackle): spack: solve --reuse -I1 hdf5
> Best of 10 considered solutions.
> Optimization Criteria:
Priority Criterion Installed ToBuild
number of packages to build (vs. reuse)
deprecated versions used
version weight
number of non-default variants (roots)
preferred providers for roots
default values of variants not being used (roots)
number of non-default variants (non-roots)
preferred providers (non-roots)
compiler mismatches
0S mismatches
non-preferred 0S's
version badness
default values of variants not being used (non-roots)
non-preferred compilers
target mismatches
non-preferred targets

SRR R R R R X)
=

SUIHRNOOOONSOOSSS !

SOPLOOOOOOOOOOOS H

hdf5@1.10.7: ~cxx~fortran~hl~ipo~java+mpi+shared~szip~threadsafe+tools api=default t | X .
Acmake@3 . 21 . 4 ~doc+ncurses+openssl+ownlibs~gt build_type=Release hdf5@1.10.7: ~cxx~fortran~hl~ipo~java+mpi+shared~szip~threadsafe+tools api=defaul

Ancurses@6 . 2 ~symlinks+termlib abi=none Acmake@3.21. 1! ~doc+ncurses+openssl+ownlibs~qt build_type=Release
Apkgconf@l. 8. o Ancurses@t . 2! ~symlinks+termlib abi=none
Aopenssl@1.1.11 ~docs certs=system 11 ~docs+systemcerts
Aperl@s.34.0; +cpanm+shared+threads Az1ib@1.2 .11 +optimize+pic+shared
Aberkeley-db@18.1. 40 +cxx~docs+stl patches=b231fcc4dScff@5e5c3a4814 Aopenmpi@4.1.1 ~atomics~cuda~cxx~cxx_exceptions+gpfs~internal-hwloc~java~leg
Abzip2@1.0.8 ~debug~pic+shared Ahwloc@2.6.0! ~cairo~cuda~gl~libudev+1libxml2~netloc~nvml~opencl~pci~rocm+
Adiffutils@s. g Alibxml2@2.9.12 ~python
Alibiconv@l. 16 libs=shared,static Alibiconv@l. 16! libs=shared,static
Agdbm@1 . 19 Axz@5.2.5 ~pic libs=shared,static
Areadline@s. 1 Apkgconf@1.8.0!
Az1lib@1.2 .11 +optimize+pic+shared Alibevent@?2.1.12 +openssl
Aopenmpi@4.1.1! ~atomics~cuda~cxx~cxx_exceptions+gpfs~internal-hwloc~java~legac Aopenssh@g . 6p1!
Ahwloc@2.6. 0! ~cairo~cuda~gl~libudev+1ibxml2~netloc~nvml~opencl~pci~rocm+shd Alibedit@3.1-20210216
Alibxml2@2.9.12 ~python Aperl@5.34.0 +cpanm+shared+threads
Axz@5.2.5 ~pic libs=shared,static Aberkeley-db@18.1.40 +cxx~docs+stl patches=b231fcc4dScff@5e5c3a4814f
Alibevent@2.1.12! +openssl Abzip2@1.0.8 ~debug~pic+shared
Aopenssh@8. 7p1! Agdbm@1.. 19
Alibedit@3.1-20210216 Areadline@s. 1’

Pure hash-based reuse: all misses With reuse: 16 packages were actually acceptabl

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io 43

Four of the top six most wanted features in Spack
were tied to the new concretizer

Average feature importance by workplace

Reuse existing installs PASEVARERV RN S/
2.4 23 2521 22 22

Better flag handling (ZASRVECEA B VRSV R VA |

Better dev support .3 23 22 23 21 22

Separate build-deps ZHEHEEVE ST P EC R LY

IENLPELEROE Sy 2.1 2.1 2.1 2.2 S 2.0

Pkg maintainer notif. JZA08 Z20RE Ee RN 8 LT |

Build testing (CI) gZ1v

Optimized binaries

Package testing §0.9

Cloud integration - 0.8 0.6 0.5 0.8 L5 0.8 0.6

2.1 1.7 2.0

15 16 15 1.8

0.7 1.0 0.9 1.0

Windows support-0.5 0.6 0.7 0.5 0.7 0.4 0.4

Join #tutorial on Slack: slack.spack.io

LLNL-PRES-806064

Materials: spack-tutorial.readthedocs.io

» Complexity of packages in Spack is increasing

- Critical - many more package solves require backtracking

than a year ago

- Many variants, conditional dependencies, special
compiler requirements

-I\:’r(?;c/)rtant
* More aggressive reuse of existing installs requires
better dependency resolution _
comewhat - Need to be able to analyze how to configure the
important build to work with installed packages
» Separate resolution of build dependencies also
_ Slightly requires a more sophisticated solver
Important - Makes the solve even more combinatorial
- Needed to support mixed compilers, version
conflicts between different package’s build
- Not requirements
Important

Part of milestone STEDOQ@ 44

Four of the top six most wanted features in Spack
were tied to the new concretizer

Average feature importance by workplace

4 - Critical

Reuse existing installs IRESsRRZACRI RN R Sy S
> 423 2.5 SEZIZNP0N 2.5

Better flag handling ZAERZEcRP A

3 - Very

R At 2 2.3 22 2.3 2.1 22 2. Important

Separate build-deps

Language virtuals

Pkg maintainer notif. s

- Somewhat
important

Done for 0.17

- Slightly

T i _ : : Important
Cloud integration - 0.8 0.6 0.5 0.8 "5 0.8 0.6 — Started
=5=076 0./ 0.5 0.7 0.4 0.4
I I I I I I I _O-m);ortant
PSSP
KSR MR O
A O SN N
N\ oﬁ\\ X

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io Part of milestone STEDOQ@ 45

LLNL-PRES-806064

We’ll resume at:
10:30am CST

Find the slides and associated scripts here:

spack-tutorial.readthedocs.io
We also have a chat room on Spack slack. Get an invite here:

slack.spack.io

Join the “tutorial” channel!

Basic Installation Tutorial
Configuration Tutorial
Package Creation Tutorial

Developer Workflows Tutorial

& Read the Docs

latest sc18 scl7 sclé rikenl9
' pearcl9 nsfl9 lanl19 isc19 ecpl9

HTML

E Project Home Builds Downloads

{ View Edit

earch docs

Docs » Tutorial: Sp

Tutorial: S

This is a full-day int
Practice and Experi
2019.

You can use these r
and read the live de

Slides
@ :;::T‘ HPC Software Complexity with

Practice and Experi
Chicago, IL, USA.

Live Demos

We provide scripts
sections in the slide

1. We provide 1
tutorial on y«
the containe

2. When we ho
unfamiliar wi

You should now be

Environments,
spack.yaml and spack.lock

Follow script at spack-tutorial.readthedocs.io

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

http://spack.rtfd.io/

Hands-on Time: Configuration

Follow script at spack-tutorial.readthedocs.io

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

http://spack.rtfd.io/

We’ll resume at:
12:30pm CST

Find the slides and associated scripts here:

spack-tutorial.readthedocs.io
We also have a chat room on Spack slack. Get an invite here:

slack.spack.io

Join the “tutorial” channel!

Basic Installation Tutorial
Configuration Tutorial
Package Creation Tutorial

Developer Workflows Tutorial

& Read the Docs

latest sc18 scl7 sclé rikenl9
' pearcl9 nsfl9 lanl19 isc19 ecpl9

HTML

E Project Home Builds Downloads

{ View Edit

earch docs

Docs » Tutorial: Sp

Tutorial: S

This is a full-day int
Practice and Experi
2019.

You can use these r
and read the live de

Slides
@ :;::T‘ HPC Software Complexity with

Practice and Experi
Chicago, IL, USA.

Live Demos

We provide scripts
sections in the slide

1. We provide 1
tutorial on y«
the containe

2. When we ho
unfamiliar wi

You should now be

Hands-on Time: Creating Packages

Follow script at spack-tutorial.readthedocs.io

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

http://spack.rtfd.io/

Hands-on Time:
Developer Workflows

Follow script at spack-tutorial.readthedocs.io

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

http://spack.rtfd.io/

We’ll resume at:
3:30pm CST

Find the slides and associated scripts here:

spack-tutorial.readthedocs.io
We also have a chat room on Spack slack. Get an invite here:

slack.spack.io

Join the “tutorial” channel!

Basic Installation Tutorial
Configuration Tutorial
Package Creation Tutorial

Developer Workflows Tutorial

& Read the Docs

latest sc18 scl7 sclé rikenl9
' pearcl9 nsfl9 lanl19 isc19 ecpl9

HTML

E Project Home Builds Downloads

{ View Edit

earch docs

Docs » Tutorial: Sp

Tutorial: S

This is a full-day int
Practice and Experi
2019.

You can use these r
and read the live de

Slides
@ :;::T‘ HPC Software Complexity with

Practice and Experi
Chicago, IL, USA.

Live Demos

We provide scripts
sections in the slide

1. We provide 1
tutorial on y«
the containe

2. When we ho
unfamiliar wi

You should now be

Hands-on Time:
Binary Caches and Mirrors

Follow script at spack-tutorial.readthedocs.io

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

http://spack.rtfd.io/

Hands-on Time:
Stacks

Follow script at spack-tutorial.readthedocs.io

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

http://spack.rtfd.io/

Hands-on Time:
Scripting

Follow script at spack-tutorial.readthedocs.io

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

http://spack.rtfd.io/

More Features
and the Road Ahead

Join #tutorial on Slack: spackpm.herokuapp.com

Materials: spack-tutorial.readthedocs.io

56

Conditional variants simplify packages

CudaPackage: a mix-in for packages that use CUDA

class (PackageBase):
variant('cuda', default= .
description="Build with CUDA")

cuda is a variant (build option)

variant('cuda_arch’, cuda_arch is only present
description="CUDA architecture', if cuda is enabled
values=any_combination_of(cuda_arch_values),
when="+cuda')

dependency on cuda, but only

depends_on('cuda', when='+cuda') if cuda is enabled

depends_on('cuda@9.0:", when="cuda_arch=70") . .
depends_on(' cuda@9.0: ', when="cuda_arch=72") constraints on cuda version
depends_on('cuda@10.0: "', when="cuda_arch=75")

conflicts('%gcc@9:', when='+cuda Acuda@:10.2.89 target=x86_64:"') compiler support for x86_64
conflicts('%gcc@9:', when="+cuda Acuda@:10.1.243 target=ppc6dle:') EEeNololasZANS

There is a lot of expressivity in this DSL.

Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io <1 57

LLNL-PRES-806064

We have recently introduced some new features to support the
development model of MARBL, an LLNL multi-physics code

Not unlike other LLNL codes, but...

MARBL is more deeply modular than prior codes i
- Designed to support modular physics o
- MARBL itself has two hydro options: Miranda & Blast

— Code, build structure both assume that a simulation
is comprised of packages

Needed a way to simplify modular workflows
— Need to work on several repos at once
— Changes to the code are multiple pull requests

LLNL doesn’t (likely won’t) use mono-repos =
- Issues:
* Managing permissions
» Code timescales
* Independence of teams

MARBL built MBS: a better poly-repo approach

spack develop lets developers work on many packages at once

» Developer features so far have
focused on single packages

spack dev-build, etc.

* New spack develop feature enables
development environments

Work on a code

Develop multiple packages from its
dependencies

Easily rebuild with changes

» Builds on spack envirnoments

LLNL-PRES-806064

Required changes to the installation
model for dev packages

dev packages don’t change paths with
configuration changes

Allows devs to iterate on builds quickly

Join #tutorial on Slack: spackpm.herokuapp.com

spack env activate .
spack add myapplication
spack develop axom@@.4.0
spack develop mfem@4.2.0

$ Us
spack.yaml axom/ mfem/

$ cat spack.yaml
spack:
specs:
— myapplication # depends on axom, mfem

develop:
— axom @0.4.0
— mfem @develop

Materials: spack-tutorial.readthedocs.io @

59

We have added git versioning to Spack

» Users can now specify a full, 40-char git commit as a version
— Works in environments or on the command line

$ spack install zlib @53ce2713117ef2a8ed682d77b944df991c499252

» This was tricky because we needed a way to compare a commit to a version
- MBS only needs to be able to fetch by commit, not compare
- Packages have conditional logic with versions
— We can compare versions to commits based on tags in a repository

» We developed an internal representation for commit versions
- Lexicographic tuple comparison:

(<version>, , <commits since prior tag>)

— Comes before any <version>.x
- Allows commits to be compared by distance between versions.

S \
ECP &=

Using git versioning, we've been able to support MARBL's

developer workflow

e First section is familiar
- List of packages with hashes

e spack.yaml ties the modular MARBL
code together:

- hashes
- parts of exo/build directory

* Some differences:
- Packages in Spack are configurable
- Can set per-package options

- Compiler options, flags are configurable
in Spack environments

* If this is too long, some of this can be
moved to external includes

ECP

@develop build_type=Release

edevelop

@wktexports

@wktexports

@950e3bfb91519ecb7b7ee7fa3063bfab23ce2c9
ascent ~fortran~openmp @587f6cf9503ef6176e59a046f6331baedSe36ce6
axom ~lua~openmp @587f6cf9503ef6176e59a0466331baed5e36ce6
blt @43022da4dfed5a50a02fbd@355defde3f12157cd
caliper~libdw @8560148e7f883fb87dec85e92c84%eec2bb61f7
camp @85601148e7883fb87dec85e92c849eec2bb61f7
care @7f43ed9ed840016173b8434b6471142a81 fd4882
chai ©d3282bc95c533efbI0ec0a06085e455daad7dfeb
conduit @f54f834ebBaaf f4fc97613e04cfdb360997867be
dray ~test~utils~openmp @cObee76f2dce29139bde1084bf@85d7d1c1b@1b4
el4 @aded490988f1d@allff74f9be7135d95e25e90ca
glvis @20aeb2c@3ce70f445232dba74179e@3c94dedc2c
gotcha @ed455990e57e5b74e16343816cd0d2d4f38d65de
irep @5d4d2893b25c4dfe4add5dd6d8110179980c2a6b
leilak @1886056c39806919bf8cce4216732fc1d8643954
mfem +shared ©9d8043b9e78dcdcd86639bbb28d3bd7b514fbSe2
raja ~openmp @9cb6370bb2868e35ebba23cdced27f5f7f9da530
ransbox @edf@72bfa7b3f6edfd6ebl0@6abbe65ae5f677abe
samrai @39017121bda44fff713fe3b@1cb1e@63be93023b
selene @6f9b15713c738d70b125bc@8aef72925d961a02e
spheral @8cc54824¢29374095203¢3803ab44960f c26d506d
tribol ©b9185d317bf14d87462ca345086931580c591eb4
umpire ~openmp @5201a47a35e3844160dcbecdd916f8c96aa7ddo7
vtkh @cd6004c94b083b@96fda5F994b491b8229dacd79
hdf5 @:1.8 +ooufortran-mpi

netcdf-c ~mpi H
python .72 options,
boost @1.76.0 -
Teos «3versions/hashes
view: false
concretization: together

repos: :
- ~/src/11nl.wci .mapp
- $spack/var/spack/repos/builtin package repOS

- ~/src/11nl.wci

compilers:
- compiler:
intel@18.0.2

cc: /usr/tce/bin/icc-18.0.2
cxx: /usr/tce/bin/icpc-18.0.2 H H
7 rarmnisareso: compiler info
fc: /usr/tce/bin/ifort-18.0.2
flags: {3}
operating_system: rhel?
target: x86_64
modules: [gcc/4.9.3, intel/18.0.2]

packages:

external
e Aapaca package prefs

lapack: [netlib-lapack]
hypre:

MPI

mvapich262.3%intel@18.0.2 process_managers=slurm arch=linux-rhel7-ivybridge
/usr/tce/packages/mvapich2/mvapich2-2.3-intel-18.0.2

buildable:
lapack:

iopet: BLAS/LAPACK

- spec: netlib-lapacke3.6.1+shared
prefix: /usr
cuda:
buildab
externals:
- spec: cuda®10.2
prefix: /opt/cudatoolkit/10.2
Basic build deps
autoconf:

externals:
- spec: automake®1.13.4
prefix: /usr

- spec: bzip2e1.0.6
prefix: /usr

build
s packases/cnacescnne-3.10.s fie peNAdencies

- spec: cmake®3.14.5

- spec: gettext60.19.8.1
prefix: /usr

- spec: libtool62.4.2
prefix: /usr

- spec: m4€1.4.16
prefix: /usr

perl@5.16.3

- spec: pkg-configeo.27.1
prefix: Jusr

- spec: tar€1.26
Jusr

Spack workflow for developer environment
Spack

git clone ssh://git@rzgitlab.1l1lnl.gov:7999/mapp/mapp
cd mapp

spack env activate .

spack develop marbl@develop .

spack develop blast@develop We can find ways to
spack develop miranda@develop shorten this

spack develop exo@develop

srun -N 2 -n 16 --exclusive spack install

A AL A A A AN

spack can do multi-node builds

) L

spack.yaml spack.lock

MIRANDA Exo

Spack generates a spack.lock file that enables you to reproduce
the environment

Users specify their constraints in spack.yaml
- The rest of configuration is automated by the concretizer

— The concretizer is a constraint solver that reconciles
package requirements with yours

— Details are beyond the scope of this presentation

If you modify spack.yaml, you can either:
- Run spack install again (this concretizes before installing)

- Run spack concretize —-force to see the
concretized environment before installing (shown at right)

» spack.lock contains all the decisions the concretizer made:
- Versions

Compilers, compiler versions

Variant values

Optional dependencies

Target architecture

Open question: how best to manage spack. lock files
Fully concretized MARBL environment

S \
ECP &=

Future CI directions focus on scalability and testing

» Scaling tests up to handle every PR has been very difficult
— Driven by GitLab
- Using Kubernetes builders
— Using a cluster at U. Oregon

» Concretization of large environments was slowing turnaround
— 55 min to concretize E4S environment (each spec separately)
— Brought this down to 2.5 min with parallelization and caching

 Amazon and E4S/UO team helping to pinpoint errors

» We are now doing about 100,000 builds/month

» Once we have a stable, rolling release of spack develop branch,
we’ll make the build cache public

— Rolling binaries for develop

_ http://stats.e4s.io
— Long-lived snapshots for each release

S

ECP g5

Spack’s model lowers the maintenance burden
of optimized software stacks

¢ B
Tradltlonal oS

package manager .
Recipe per Build farm Portable (unoptimized)

package configuration x86_64 binaries
(need rewrites for new systems)

Optimized :> zlg TE ?E Many
l[: i, Graviton2 binaries O M3 M3 goftware stacks
@ :;/l\ Optimized |:> ?E ?E TE Built for specific:
= ‘O V&3

Skylake binaries Systems

One software stack
upgraded over time

Spack Parameterized recipe

e ilers
per package Build farm / CI Hih, - Compi
(Same recipe evolves for all targets) ., Optimized |:> TE TE z'E OS’s
b GPU binaries =3 \bca \;E3 MPls
etc.

Q Users/developers can also build directly from source é F

Spack’s long-term strategy is based around
broad adoption and collaboration

* Not sustainable without a community AMD1 e
— Broad adoption incentivizes contributors
. & Google Cloud aWS

— Cloud resources and automation absolutely necessary

» Spack preserves build knowledge in a =
cross-platform, reusable way FUJITSU

— Minimize rewriting recipes when porting

AAAAAAAAAA

» Cl ensures builds continue to work as packages &%A ”
evolve ’
Sandia

- Keep packages flexible but verify key configurations ' .
A National

’\l Laboratories
BERKELEY LAB q r m %OAK RIDGE

National Laboratory

* Any suggestions on sustainability models would
be appreciated!

Spack 0.18 Roadmap: compilers as dependencies

= We need deeper modeling of compilers to handle
compiler interoperability

- IibStdC++, |ibC++ Compatlblhty » /Compiler-imposed dep
— Compilers that depend on compilers 2 -

— Linking executables with multiple compilers

Already-installed dep

= First prototype is complete!
— We've done successful builds of some packages using
compilers as dependencies
— We need the new concretizer to move forward!

= Packages that depend on languages
— Depend on cxx@2011, cxx@2017, fortran@1995, etc

— Depend on openmp@4.5, other compiler features

. Compilers and runtime libs fully modeled
— Model languages, openmp, cuda, etc. as virtuals as dependencies

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 67

LLNL-PRES-806064

Separate concretization of build dependencies

 We want to: spack install pkgl Sintel

— Build build dependencies with the "easy" compilers

— Build rest of DAG (the link/run dependencies) with the 1
fancy compiler

 This required significant concretizer modifications

» Gets into issues like bootstrapping

O Easy compiler

Fancy compiler
B: build L:link R:run

Ongoing research:
BUILD is a 3-year research project, started at LLNL in 2020

_ _ , Human-generated constraints Compatibility Models
» Basic premise: humans can’t generate all the

compatibility constraints = 1 f(t1) 1g(t1, t2)
— Version ranges, conflicts, in Spack packages not precise | B version v2, defines 2
— rely on maintainers to get right. lh(tg) 1,(”, 3)
* BUILD aims to understand software compatibility at the g
binary level
— Develop ABI compatibility models Solver

- Enable automatic and ABI-compatible reuse of system
binaries, foreign binary packages

* WIP: better dependency solvers can enable users to

solve around system dependencies Resolved
i ” . . . ABI-compatible
- find “closest” match to a prior build, using new packages Graph

- Reproduce a prior build with new requirements

After ECP

* We are looking at longer-term sustainability directions after
ECP

» Opportunities (everything is in flux at this point):
- ASCR Workshop on the Science of Scientific-Software
Development and Use
* just came out

— Leadership Scientific Software Meeting series Quick inks
https://Issw.io

Leadership Scientific Software (LSSw) Portal

Leadership Scientific Software (LSSw) Portal
The LSSw portal i dedicated to building community and unders around

Background

* We want to be part of any post-ECP sustainability effort!
- Likely some type of work in conjunction with E4S

A Working Definition of Leadership Scientific Software

The focus of

S —
\\ EXASCALE
() COMPUTING
PROJECT
\\~—

https://lssw.io/

Join the Spack community!

= There are lots of ways to get involved!
— Contribute packages, documentation, or features at github.com/spack/spack
— Contribute your configurations to github.com/spack/spack-configs

= Talk to us!
— You're already on our Slack channel (spackpm.herokuapp.com)
— Join our Google Group (see GitHub repo for info)
— Submit GitHub issues and pull requests!

* Star us on GitHub!
github.com/spack/spack

Follow us on Twitter!
@spackpm

We hope to make distributing & using HPC software easy!

Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io @ 71

LLNL-PRES-806064

|2

Lawrence Livermore
National Laboratory

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

