

Managing HPC Software Complexity with Spack

The most recent version of these slides can be found at: https://spack-tutorial.readthedocs.io

Supercomputing 2019 Full-day Tutorial November 18, 2018 Dallas, Texas

Tutorial Materials

Download the latest version of slides and handouts at:

spack-tutorial.readthedocs.io

For more:

Spack website: spack.io

Spack GitHub repository: <u>github.com/spack/spack</u>

Spack Reference Documentation: spack.readthedocs.io

Docs » Tutorial: Spa

Tutorial: S

This is a full-day int Practice and Experi 2019.

You can use these n and read the live de

Slides

Practice and Experi Chicago, IL, USA.

Live Demos

We provide scripts sections in the slide

- 1. We provide tutorial on you
- the containe

 2. When we ho
 unfamiliar w

You should now be

Tutorial Presenters

Todd Gamblin, Greg Becker, Peter Scheibel LLNL

Mario Melara NERSC

Adam Stewart UIUC

Massimiliano Culpo Sylabs, Inc.

Software complexity in HPC is growing

Nalu: Generalized Unstructured Massively Parallel Low Mach Flow

LLNL-PRES-806064

Software complexity in HPC is growing

LLNL-PRES-806064

Nalu: Generalized Unstructured Massively Parallel Low Mach Flow

dealii: C++ Finite Element Library

Software complexity in HPC is growing

What is the "production" environment for HPC?

- Someone's home directory?
- LLNL? LANL? Sandia? ANL? LBL? TACC?
 - Environments at large-scale sites are very differen
- Which MPI implementation?
- Which compiler?
- Which dependencies?
- Which versions of dependencies?
 - Many applications require specific dependency versions.

The complexity of the exascale ecosystem threatens productivity.

- = up to **1,260,000** combinations!
- Every application has its own stack of dependencies.
- Developers, users, and facilities dedicate (many) FTEs to building & porting.
- Often trade reuse and usability for performance.

Follow along at spack-tutorial.readthedocs.io

We must make it easier to rely on others' software!

What about containers?

- Containers provide a great way to reproduce and distribute an already-built software stack
- Someone needs to build the container!
 - This isn't trivial
 - Containerized applications still have hundreds of dependencies
- Using the OS package manager inside a container is insufficient
 - Most binaries are built unoptimized
 - Generic binaries, not optimized for specific architectures
- HPC containers may need to be rebuilt to support many different hosts, anyway.
 - Not clear that we can ever build one container for all facilities
 - Containers likely won't solve the N-platforms problem in HPC

Spack is a flexible package manager for HPC

- How to install Spack:
- \$ git clone https://github.com/spack/spack
- \$. spack/share/spack/setup-env.sh
- How to install a package:
- \$ spack install hdf5
- HDF5 and its dependencies are installed within the Spack directory.
- Unlike typical package managers, Spack can also install many variants of the same build.
 - Different compilers
 - Different MPI implementations
 - Different build options

Who can use Spack?

People who want to use or distribute software for HPC!

End Users of HPC Software

Install and run HPC applications and tools

2. HPC Application Teams

Manage third-party dependency libraries

3. Package Developers

People who want to package their own software for distribution

4. User support teams at HPC Centers

People who deploy software for users at large HPC sites

Spack is used worldwide!

Spack has been gaining adoption rapidly (if stars are an indicator)

LLNL-PRES-806064

Users on our documentation site have also been increasing

Spack is being used on many of the top HPC systems

- Official deployment tool for the U.S. Exascale Computing Project
- 7 of the top 10 supercomputers
- High Energy Physics community
 - Fermilab, CERN, collaborators
- Astra (Sandia)
- Fugaku (Japanese National Supercomputer Project)

Fugaku coming to RIKEN in 2021 DOE/MEXT collaboration

Summit (ORNL), Sierra (LLNL)

SuperMUC-NG (LRZ, Germany)

Edison, Cori, Perlmutter (NERSC)

Contributions to Spack continue to grow!

- In November 2015, LLNL provided most of the contributions to Spack
- Since then, we've gone from 300 to over 3,500 packages
- Most packages are from external contributors!
- Many contributions in core, as well.
- We are committed to sustaining Spack's open source ecosystem!

LLNL-PRES-80606

Spack v0.13.1 is the latest release

• Major new features:

- 1. Chaining: use dependencies from external "upstream" Spack instances
- 2. Views for Spack environments (covered today)
- 3. Spack detects and builds *specifically* for your microarchitecture (not shown in tutorial)
 - named, understandable targets like skylake, broadwell, power9, zen2
- 4. Spack stacks: combinatorial environments for facility deployment (covered today)
- 5. Projections: ability to build easily navigable symlink trees environments (covered today)
- 6. Support no-source packages (BundlePackage) to aggregate related packages
- 7. Extensions: users can write custom commands that live outside of Spack repo
- 8. ARM + Fujitsu compiler support
- 9. GitLab Build Pipelines: Spack can generate a pipeline from a stack (covered in slides)
- Over 3,500 packages (~700 added since last year)
- Full release notes: https://github.com/spack/spack/releases/tag/v0.13.0

Related Work

Spack is not the first tool to automate builds

Inspired by copious prior work

1. "Functional" Package Managers

- Nix
- GNU Guix

https://nixos.org/ https://www.gnu.org/s/guix/

2. Build-from-source Package Managers

- Homebrew
- MacPorts

http://brew.sh https://www.macports.org

Other tools in the HPC Space:

Easybuild

- An installation tool for HPC
- Focused on HPC system administrators different package model from Spack
- Relies on a fixed software stack harder to tweak recipes for experimentation

Conda

- Very popular binary package manager for data science
- Not targeted at HPC; generally unoptimized binaries

http://hpcugent.github.io/easybuild/

https://conda.io

Spack at SC19

Meet the developers at DOE's Booth 925

Follow along at spack-tutorial.readthedocs.io

- Wednesday 10:00am 11:00am
- Thursday 2:30pm 3:30pm
- BOFs:
 - E4S BOF: Tues 12:15 1:15
 - Getting Scientific Software Installed: Wed 12:15 1:15
 - Spack Community BOF: Thurs 12:15 1:15
- 3 papers at workshops
- More!

For a full list of events, visit spack.io

<u>Supercomputing 2019 (SC19)</u> kicks off this week in Denver, and the Spack team will be busy with a <u>tutorial</u>, several BOFs, two meet-the-developers sessions at the DOE booth, and even some papers!. See below for a list of events by us and our collaborators.

Sun., November 17

Tues.. November 19

Wed., November 20 Thurs November 21

Fri., November 22

Be sure to follow @spackpm on Twitter for updates!

Sun., November 17

1:30pm - 5:00pm, in 207
The <u>Container Computing for HPC and Scientific Workflows Untrolal</u> will have sections on £45, a software stack that uses Spack for deployment, and examples of how to build lightweight containers using Spack <u>environments</u>. There is also a BPC ne £45 on Tuesday (see below).

Mon., November 18

- 8:30am 5:00pm, in 301
 Join us for our fourth tutorial at SC: Managing HPC
 Software Complexity with Spack. This is an intensive, full-day course on using Spack. This year, we're introducing new
 material on environments, developer workflows, facility
 deployment with Spack stacks, scripting, and more.
- 9:30am 10:00am, in 605 (NOTE: was Sunday)
 Check out Sam Knight's paper, <u>Using Malleable Task Scheduling to Accelerate Package Manager Installations at the HUST'19 workshop</u>. This is about ways to pack more Spack builds on a single node.
- 11:20am 11:45am, in 708 Sergei Shudler, Nicola Ferrier, Joseph Insley, Michael Papka, and Silvio Rizzi from Argonne National Laboratory will be presenting <u>Spack Meets Singularity: Creating Movable in-Stitt</u> Analysis Stacks with Ease at the ISAVT9 workshor. The talk covers how to use Spack to ease the process of building Singularity containers with complex visualization stacks.

Tues., November 19

12:15pm - 1:15pm, in 405-406-407
 The first <u>Extreme-Scale Scientific Software Stack (E4S)</u>, <u>80F</u> will talk about <u>E4S</u>, a community effort to provide open source software packages for developing, <u>deploying</u> and running scientific applications on high-performance

Spack Basics

Spack provides a *spec* syntax to describe customized DAG configurations

```
$ spack install mpileaks
$ spack install mpileaks@3.3
$ spack install mpileaks@3.3 %gcc@4.7.3
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads
$ spack install mpileaks@3.3 cppflags="-03 -g3"
$ spack install mpileaks@3.3 target=skylake
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3
$ custom compiler
+/- build option
$ set compiler flags
$ set target microarchitecture
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3
$ dependency information
```

- Each expression is a spec for a particular configuration
 - Each clause adds a constraint to the spec
 - Constraints are optional specify only what you need.
 - Customize install on the command line!
- Spec syntax is recursive
 - Full control over the combinatorial build space

`spack list` shows what packages are available

<pre>\$ spack list ==> 303 packages.</pre>										
activeharmony	cgal	fish	qtkplus	libad	mesa	openmpi	py-coverage	py-pycparser	a±	tcl
adept-utils	cam	flex	harfbuzz	libgpg-error	metis	openspeedshop	py-coverage py-cython	py-pyelftools	qt qthreads	texinfo
apex	cityhash	fltk	hdf	libjpeg-turbo	Mitos	openssl	py-dateutil	py-pygments	R	the_silver_searcher
1 '	cleverleaf	flux	hdf5	libjson-c		otf			ravel	thrift
arpack asciidoc	cloog	fontconfig	hwloc	libmng	mpc mpe2	otf2	py-epydoc py-funcsias	py-pylint	readline	tk
atk	cmake	freetype	hypre	libmonitor	mpfr	pango	py-genders	py-pypar py-pyparsing	rose	tmux
atlas	cmocka	gasnet	icu	libNBC	mpibash	pango	py-genders py-gnuplot	py-pyqt	rsync	tmuxinator
atop	coreutils	gcc	icu4c	libpciaccess	mpich	paraver	py-h5py	py-pyside	ruby	trilinos
autoconf	cppcheck	gdb	ImageMagick	libpng	mpileaks	paraview	py-ipython	py-pytables	SAMRAI	uncrustify
automaded	cram	adk-pixbuf	isl	libsodium	mrnet	parmetis	py-libxml2	py-python-daemon	samtools	util-linux
automake	cscope	geos	jdk	libtiff	mumps	parpack	py-lockfile	py-pytz	scalasca	valgrind
bear	cube	gflags	jemalloc	libtool	munge	patchelf	py-mako	py-rpy2	scorep	vim
bib2xhtml	curl	ahostscript	jpeg	libunwind	muster	pcre	py-matplotlib	py-scientificpython	scotch	vtk
binutils	czma	git		libuuid	mvapich2	pcre2	py-mock	py-scikit-learn	scr	wget
bison	damselfly	glib	judy julia	libxcb	nasm	pdt	py-mock py-mpi4py	py-scipy	silo	WX
boost	dbus	glm	launchmon	libxml2	ncdu	petsc	py-mx	py-setuptools	snappy	wxpropgrid
bowtie2	docbook-xml	global	lcms	libxshmfence	ncurses	pidx	py-mysqldb1	py-shiboken	sparsehash	xcb-proto
boxlib	doxygen	glog	leveldb	libxslt	netcdf	pixman	py-nose	py-sip	spindle	xerces-c
bzip2	dri2proto	glpk	libarchive	llvm	netgauge	pkg-config	py-numexpr	py-six	spot	XZ
cairo	dtcmp	gmp	libcerf	llvm-lld	netlib-blas	pmgr_collective	py-numpy	py-sphinx	sqlite	yasm
callpath	dyninst	amsh	libcircle	lmdb	netlib-lapack	postgresql	py-pandas	py-sympy	stat	zeroma
cblas	eigen	gnuplot	libdrm	lmod	netlib-scalapack	ppl	py-pbr	py-tappy	sundials	zlib
cbtf	elfutils	gnutls	libdwarf	lua	nettle [']	protobuf	py-periodictable	py-twisted	swig	zsh
cbtf-argonavis	elpa	gperf	libedit	lwgrp	ninja	py-astropy	py-pexpect	py-urwid	szip	
cbtf-krell	expat	gperftools	libelf	lwm2	ompss	py-basemap	py-pil	py-virtualenv	tar	
cbtf-lanl	extrae	graphlib	libevent	matio	ompt-openmp	py-biopython	py-pillow	py-yapf	task	
cereal	exuberant-ctags	graphviz	libffi	mbedtls	opari2	py-blessings	py-pmw	python	taskd	
cfitsio	fftw	gsl	libgcrypt	memaxes	openblas	py-cffi	py-pychecker	qhull	tau	

Spack has over 3,500 packages now.

`spack find` shows what is installed

```
$ spack find
==> 103 installed packages.
-- linux-rhel6-x86_64 / qcc@4.4.7 ------
ImageMagick@6.8.9-10
                    alib@2.42.1
                                      libtiff@4.0.3
                                                       panao@1.36.8
                                                                            at@4.8.6
SAMRAT@3.9.1
                                                       parmetis@4.0.3
                    graphlib@2.0.0
                                      libtool@2.4.2
                                                                            at@5.4.0
adept-utils@1.0
                    qtkplus@2.24.25
                                      libxcb@1.11
                                                       pixman@0.32.6
                                                                            ravel@1.0.0
atk@2.14.0
                    harfbuzz@0.9.37
                                      libxml2@2.9.2
                                                       py-dateutil@2.4.0
                                                                            readline@6.3
boost@1.55.0
                    hdf5@1.8.13
                                      11vm@3.0
                                                       py-ipython@2.3.1
                                                                            scotch@6.0.3
cairo@1.14.0
                    i cu@54 . 1
                                      metis@5.1.0
                                                       pv-nose@1.3.4
                                                                            starpu@1.1.4
                                      mpich@3.0.4
                                                       py-numpy@1.9.1
callpath@1.0.2
                    jpeq@9a
                                                                            stat@2.1.0
dyninst@8.1.2
                    libdwarf@20130729
                                      ncurses@5.9
                                                       py-pytz@2014.10
                                                                            xz@5.2.0
                    libelf@0.8.13
                                      ocr@2015-02-16
                                                       py-setuptools@11.3.1
                                                                           zlib@1.2.8
dyninst@8.1.2
fontconfig@2.11.1
                    libffi@3.1
                                      openssl@1.0.1h
                                                       py-six@1.9.0
freetype@2.5.3
                    libmng@2.0.2
                                      otf@1.12.5salmon
                                                       python@2.7.8
qdk-pixbuf@2.31.2
                    libpng@1.6.16
                                      otf2@1.4
                                                       ahull@1.0
-- linux-rhel6-x86_64 / gcc@4.8.2 ------
adept-utils@1.0.1 boost@1.55.0
                              cmake@5.6-special libdwarf@20130729
                                                                  mpich@3.0.4
adept-utils@1.0.1 cmake@5.6
                               dvninst@8.1.2
                                                libelf@0.8.13
                                                                  openmpi@1.8.2
-- linux-rhel6-x86_64 / intel@14.0.2 -----
hwloc@1.9 mpich@3.0.4 starpu@1.1.4
-- linux-rhel6-x86_64 / intel@15.0.0 -----
adept-utils@1.0.1 boost@1.55.0 libdwarf@20130729 libelf@0.8.13 mpich@3.0.4
-- linux-rhel6-x86 64 / intel@15.0.1 ------
adept-utils@1.0.1 callpath@1.0.2 libdwarf@20130729
                                                  mpich@3.0.4
boost@1.55.0
                 hwl oc@1.9
                                libelf@0.8.13
                                                  starpu@1.1.4
```

- All the versions coexist!
 - Multiple versions of same package are ok.
- Packages are installed to automatically find correct dependencies.
- Binaries work regardless of user's environment.
- Spack also generates module files.
 - Don't have to use them.

Users can query the full dependency configuration of installed packages.

Expand dependencies with spack find -d

```
$ spack find -dl callpath
==> 2 installed packages.
                                              -- linux-rhel6-x86_64 / gcc@4.9.2
-- linux-rhel6-x86_64 / clang@3.4 -----
xv2clz2
           callpath@1.0.2
                                              udltshs
                                                         callpath@1.0.2
ckjazss
               ^adept-utils@1.0.1
                                              rfsu7fb
                                                              ^adept-utils@1.0.1
3ws43m4
                   ^boost@1.59.0
                                              vbet64v
                                                                  ^boost@1.55.0
ft7znm6
                   ^mpich@3.1.4
                                                                  ^mpich@3.1.4
                                              aa4ar6i
               ^dyninst@8.2.1
                                                              ^dyninst@8.2.1
aanuet3
                                              tmnnae5
                   ^boost@1.59.0
                                                                  ^boost@1.55.0
3ws43m4
                                              vbet64v
a65rdud
                   ^libdwarf@20130729
                                              q2mxrl2
                                                                  ^libdwarf@20130729
                       ^libelf@0.8.13
                                                                      ^libelf@0.8.13
ci5p5fk
                                              vnpai3j
ci5p5fk
                   ^libelf@0.8.13
                                                                  ^libelf@0.8.13
                                              ynpai3j
a65rdud
               ^libdwarf@20130729
                                                              ^libdwarf@20130729
                                              q2mxrl2
                   ^libelf@0.8.13
                                                                  ^libelf@0.8.13
ci5p5fk
                                              vnpai3j
ci5p5fk
               ^libelf@0.8.13
                                              vnpai3j
                                                              ^libelf@0.8.13
               ^mpich@3.1.4
                                                              ^mpich@3.1.4
ft7znm6
                                              aa4ar6i
```

Architecture, compiler, versions, and variants may differ between builds.

Spack manages installed compilers

- Compilers are automatically detected
 - Automatic detection determined by OS
 - Linux: PATH
 - Cray: `module avail`
- Compilers can be manually added
 - Including Spack-built compilers

compilers.yaml

```
compilers:
- compiler:
   modules: □
    operating_system: ubuntu14
   paths:
      cc: /usr/bin/qcc/4.9.3/qcc
      cxx: /usr/bin/gcc/4.9.3/g++
      f77: /usr/bin/gcc/4.9.3/gfortran
      fc: /usr/bin/qcc/4.9.3/qfortran
    spec: qcc@4.9.3
- compiler:
   modules: □
    operating_system: ubuntu14
    paths:
      cc: /usr/bin/clang/6.0/clang
      cxx: /usr/bin/clang/6.0/clang++
      f77: null
      fc: null
    spec: clang@6.0
- compiler:
```


Hands-on Time: Spack Basics

Follow script at **spack-tutorial.readthedocs.io**

Core Spack Concepts

Most existing tools do not support combinatorial versioning

- Traditional binary package managers
 - RPM, yum, APT, yast, etc.
 - Designed to manage a single stack.
 - Install one version of each package in a single prefix (/usr).
 - Seamless upgrades to a stable, well tested stack
- Port systems
 - BSD Ports, portage, Macports, Homebrew, Gentoo, etc.
 - Minimal support for builds parameterized by compilers, dependency versions.
- Virtual Machines and Linux Containers (Docker)
 - Containers allow users to build environments for different applications.
 - Does not solve the build problem (someone has to build the image)
 - Performance, security, and upgrade issues prevent widespread HPC deployment.

Spack handles combinatorial software complexity.

LLNL-PRES-806064

- Each unique dependency graph is a unique configuration.
- Each configuration installed in a unique directory.
 - Configurations of the same package can coexist.
- Hash of entire directed acyclic graph (DAG) is appended to each prefix.
- Installed packages automatically find dependencies
 - Spack embeds RPATHs in binaries.
 - No need to use modules or set LD_LIBRARY_PATH
 - Things work the way you built them

Spack Specs can constrain versions of dependencies

- Spack ensures one configuration of each library per DAG
 - Ensures ABI consistency.
 - User does not need to know DAG structure; only the dependency names.
- Spack can ensure that builds use the same compiler, or you can mix
 - Working on ensuring ABI compatibility when compilers are mixed.

Spack handles ABI-incompatible, versioned interfaces like MPI

- mpi is a virtual dependency
- Install the same package built with two different MPI implementations:

```
$ spack install mpileaks ^mvapich@1.9 $ spack install mpileaks ^openmpi@1.4:
```

Let Spack choose MPI implementation, as long as it provides MPI 2 interface:

\$ spack install mpileaks ^mpi@2

Concretization fills in missing configuration details when the user is not explicit.

Abstract, normalized spec with some dependencies.

LLNL-PRES-806064

Concrete spec is fully constrained and can be passed to install.

spec.yaml

```
spec:
- mpileaks:
    arch: linux-x86 64
    compiler:
     name: acc
      version: 4.9.2
      adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
      callpath: bah5f4h4d2n47mavcei2mtrnrivvxv77
      mpich: aa4ar6ifj23yijqmdabeakpejcli72t3
    hash: 33hjjhxi7p6gyzn5ptgyes7sghyprujh
    variants: {}
    version: '1.0'
- adept-utils:
   arch: linux-x86 64
    compiler:
     name: gcc
      version: 4.9.2
    dependencies:
      boost: teesjv7ehpe5ksspjim5dk43a7qnowlq
      mpich: aa4ar6ifj23yijqmdabeakpejcli72t3
    hash: kszrtkpbzac3ss2ixcikcorlavbnptp4
    variants: {}
    version: 1.0.1
- boost:
    arch: linux-x86 64
   compiler:
     name: gcc
     version: 4.9.2
    dependencies: {}
   hash: teesjv7ehpe5ksspjim5dk43a7qnowlq
   variants: {}
    version: 1.59.0
```

Detailed provenance is stored with the installed package

Use 'spack spec' to see the results of concretization

```
$ spack spec mpileaks
Input spec
 mpileaks
Concretized
 mpileaks@1.0%qcc@5.3.0 arch=darwin-elcapitan-x86_64
      ^adept-utils@1.0.1%qcc@5.3.0 arch=darwin-elcapitan-x86_64
          ^boost@1.61.0%qcc@5.3.0+atomic+chrono+date_time~debug+filesystem~graph
           ~icu_support+iostreams+locale+log+math~mpi+multithreaded+program_options
           ~python+random +regex+serialization+shared+signals+singlethreaded+system
           +test+thread+timer+wave arch=darwin-elcapitan-x86_64
              ^bzip2@1.0.6%qcc@5.3.0 arch=darwin-elcapitan-x86_64
              ^zlib@1.2.8%qcc@5.3.0 arch=darwin-elcapitan-x86_64
          ^openmpi@2.0.0%qcc@5.3.0~mxm~pmi~psm~psm2~slurm~sqlite3~thread_multiple~tm~verbs+vt arch=darwin-elcapitan-x86_64
              ^hwloc@1.11.3%qcc@5.3.0 arch=darwin-elcapitan-x86_64
                  ^libpciaccess@0.13.4%qcc@5.3.0 arch=darwin-elcapitan-x86_64
                      ^libtool@2.4.6%qcc@5.3.0 arch=darwin-elcapitan-x86_64
                          ^m4@1.4.17%qcc@5.3.0+siqseqv arch=darwin-elcapitan-x86_64
                              ^libsiqseqv@2.10%qcc@5.3.0 arch=darwin-elcapitan-x86_64
      ^callpath@1.0.2%qcc@5.3.0 arch=darwin-elcapitan-x86_64
          ^dyninst@9.2.0%qcc@5.3.0~stat_dysect arch=darwin-elcapitan-x86_64
              ^libdwarf@20160507%qcc@5.3.0 arch=darwin-elcapitan-x86_64
                  ^libelf@0.8.13%qcc@5.3.0 arch=darwin-elcapitan-x86_64
```

Extensions and Python Support

- Spack installs each package in its own prefix
- Some packages need to be installed within directory structure of other packages
 - i.e., Python modules installed in \$prefix/lib/python-<version>/site-packages
 - Spack supports this via extensions

```
class PyNumpy(Package):
    """NumPy is the fundamental package for scientific computing with Python."""
    homepage = "https://numpy.org"
             = "https://pypi.python.org/packages/source/n/numpy/numpy-1.9.1.tar.gz"
    version('1.9.1', ' 78842b73560ec378142665e712ae4ad9')
    extends('python')
 def install(self, spec, prefix):
        setup_py("install", "--prefix={0}".format(prefix))
```


Spack extensions

- Some packages need to be installed within directory structure of other packages
- Examples of extension packages:
 - python libraries are a good example
 - R, Lua, perl
 - Need to maintain combinatorial versioning
 - \$ spack activate py-numpy @1.10.4
- Symbolic link to Spack install location
- Automatically activate for correct version of dependency
 - Provenance information from DAG
 - Activate all dependencies that are extensions as well.

```
spack/opt/
linux-rhel6-x86_64/
gcc-4.7.2/
python-2.7.12-6y6vvaw/
lib/python2.7/site-packages/
...
py-numpy-1.10.4-oaxix36/
lib/python2.7/site-packages/
numpy/
...
```

```
spack/opt/
linux-rhel6-x86_64/
gcc-4.7.2/
python-2.7.12-6y6vvaw/
lib/python2.7/site-packages/
numpy@
py-numpy-1.10.4-oaxix36/
lib/python2.7/site-packages/
numpy/
```


Building against externally installed software

packages.yaml

```
packages:
mpi:
buildable: False
openmpi:
buildable: False
paths:
    openmpi@2.0.0 %gcc@4.7.3 arch=linux-rhel6-ppc64:
    /path/to/external/gcc/openmpi-2.0.0
    openmpi@1.10.3 %gcc@4.7.3 arch=linux-rhel6-ppc64:
    /path/to/external/gcc/openmpi-1.10.3
    openmpi@2.0.0 %intle@16.0.0 arch=linux-rhel6-ppc64:
    /path/to/external/intel/openmpi-2.0.0
    openmpi@1.10.3 %intel@16.0.0 arch=linux-rhel6-ppc64:
    /path/to/external/intel/openmpi-1.10.3
...
```

A user registers external packages with Spack.

LLNL-PRES-806064

Spack package repositories

- Some packages can not be released publicly
- Some users have use cases that require bizarre custom builds
- Packaging issues should not prevent users from updating Spack
 - Solution: separate repositories
 - A repository is simply a directory of package files
- Spack supports external repositories that can be layered on top of the built-in packages
- Custom packages can depend on built-in packages (or packages in other repositories)

```
$ spack repo create /path/to/my_repo
$ spack repo add my_repo
$ spack repo list
==> 2 package repositories.
my_repo /path/to/my_repo
builtin spack/var/spack/repos/builtin
```

my_repo
proprietary packages, pathological builds

spack/var/spack/repos/builtin

"standard" packages in the spack mainline.

Spack mirrors

- Spack allows you to define mirrors:
 - Directories in the filesystem
 - On a web server
 - In an S3 bucket
- Mirrors are archives of fetched tarballs, repositories, and other resources needed to build
 - Can also contain binary packages
- By default, Spack maintains a mirror in var/spack/cache of everything you've fetched so far.
- You can host mirrors internal to your site
 - See the documentation for more details

Hands-on Time: Configuration

Follow script at spack-tutorial.readthedocs.io

Making your own Spack Packages

Creating your own Spack Packages

- Package is a recipe for building
- Each package is a Python class
 - Download information
 - Versions/Checksums
 - Build options
 - Dependencies
 - Build instructions
- Package collections are repos
 - Spack has a "builtin" repo in var/spack/repos/builtin

\$REPO/packages/zlib/package.py

```
from spack import *
class Zlib(Package):
    """A free, general-purpose, legally unencumbered lossless
       data-compression library.""
    homepage = "http://zlib.net"
             = "http://zlib.net/zlib-1.2.8.tar.gz"
   version('1.2.8', '44d667c142d7cda120332623eab69f40')
    depends_on('cmake', type='build')
    def install(self, spec, prefix):
        configure('--prefix={0}'.format(prefix))
        make()
        make('install')
```


Spack packages are templates for builds

- Each package has one class
 - zlib for Intel compiler and zlib for GCC compiler are built with the same recipe.
- Can add conditional logic using spec syntax
 - Think of package as translating a concrete DAG to build instructions.
 - Dependencies are already built
 - No searching or testing; just do what the DAG says
- Compiler wrappers handle many details automatically.
 - Spack feeds compiler wrappers to (cc, c++, f90, ...)
 to autoconf, cmake, gmake, ...
 - Wrappers select compilers, dependencies, and options under the hood.

package.py

```
def install(self, spec, prefix):
    config_opts=['--prefix='+prefix]

    if '~shared' in self.spec:
        config_opts.append('--disable-shared')
    else:
        config_opts.append('--enable-shared')

    configure(config_opts)
    make()
    make('install')
```


Spack builds each package in its own compilation environment

Writing Packages - Versions and URLs

\$REPO/packages/mvapich/package.py

```
class Mvapich2(Package):
   homepage = "http://mvapich.cse.ohio-state.edu/"
   url = "http://mvapich.cse.ohio-state.edu/download/mvapich/mv2/mvapich2-2.2rc2.tar.gz"
    version('2.2rc2', 'f9082ffc3b853ad1b908cf7f169aa878')
    version('2.2b',
                      '5651e8b7a72d7c77ca68da48f3a5d108')
   version('2.2a',
                      'b8ceb4fc5f5a97add9b3ff1b9cbe39d2')
   version('2.1',
                      '0095ceecb19bbb7fb262131cb9c2cdd6')
```

- Package downloads are hashed with MD5 by default
 - Also supports SHA-1, SHA-256, SHA-512
 - We'll be switching to SHA-256 or higher soon.
- Download URLs can be automatically extrapolated from URL.
 - Extra options can be provided if Spack can't extrapolate URLs
- Options can also be provided to fetch from VCS repositories

Writing Packages – Variants and Dependencies

\$REPO/packages/petsc/package.py

- Variants are named, have default values and help text
- Other packages can be dependencies
 - when clause provides conditional dependencies
 - Can depend on specific versions or other variants

Writing Packages – Build Recipes

- Functions wrap common ops
 - cmake, configure, patch, make, ...
 - Executable and which for new wrappers.
- Commands executed in clean environment

- Full Python functionality
 - Patch up source code
 - Make files and directories
 - Calculate flags
 - **—** ..

\$REPO/packages/dyninst/package.py

```
def install(self, spec, prefix):
    with working_dir("build", create=True):
        cmake("...", *std_cmake_args)
        make()
        make("install")
@when('@:8.1')
def install(self, spec, prefix):
    configure("--prefix=" + prefix)
    make()
    make("install")
```


Create new packages with spack create

```
$ spack create http://zlib.net/zlib-1.2.8.tar.gz
```

\$REPO/packages/zlib/package.py

```
class Zlib(Package):
    # FIXME: Add a proper url for your package's homepage here.
    homepage = "http://www.example.com"
    url = "http://zlib.net/zlib-1.2.8.tar.gz"
    version('1.2.8', '44d667c142d7cda120332623eab69f40')

def install(self, spec, prefix):
    # FIXME: Modify the cmake line to suit your build system here.
```

- spack create <url> will create a skeleton for a package
 - Spack reasons about URL, hash, version, build recipe.
 - Generates boilerplate for Cmake, Makefile, autotools, Python, R, Waf, Perl
 - Not intended to completely write the package, but gets you 80% of the way there.
- spack edit <package> for subsequent changes

Hands-on Time: Creating Packages

Follow script at spack-tutorial.readthedocs.io

Hands-on Time: Environment Modules

Environments, spack.yaml and spack.lock

Spack Stacks

Developer Workflows

Scripting and spack-python

More New Features and the Road Ahead

We have been heavily involved in the ECP CI project.

OnyxPoint ⊑ĈP

- Integration with center identity management
- Integration with schedulers like SLURM, LSF
- We are democratizing testing at Livermore Computing
 - Users can run tests across 30+ machines by editing a file
 - Previously, each team had to administer own servers
- ECP sites are deploying GitLab CI for users
 - All HPC centers can leverage these improvements
 - NNSA labs plan to deploy common high-side CI infrastructure
 - We are developing new security policies to allow external open source code to be tested safely on key machines

Spack now understands specific target microarchitectures

- We have developed a cross-platform library to detect and compare microarchitecture metadata
 - Detects based on /proc/cpuinfo (Linux), sysctl (Mac)
 - Allows comparisons for compatibility, e.g.:

```
skylake > broadwell
zen2 > x86_64
```

Key features:

LLNL-PRES-806064

- Know which compilers support which chips/which flags
- Determine compatibility
- Enable creation and reuse of optimized binary packages

 Easily query available architecture features for portable build recipes

- We will be extracting this as a standalone library for other tools & languages
 - Hope to make this standard!

```
$ spack arch --known-targets
Generic architectures (families)
   aarch64 ppc64 ppc64le x86 x86_64
IBM - ppc64
   power7 power8 power9
IBM - ppc64le
   power8le power9le
AuthenticAMD - x86_64
   barcelona bulldozer piledriver steamroller excavator zen zen2
GenuineIntel - x86 64
                                   mic knl
                                                   cascadel ake
    nocona
                         haswell
            sandybridge
                         broadwell
                                   skylake_avx512 icelake
    core2
    nehalem ivvbridae
                         skvlake
                                    cannonlake
GenuineIntel - x86
   i686 pentium2 pentium3 pentium4 prescott
```

Extensive microarchitecture knowledge

```
class OpenBlas(Package):
    def configure_args(self, spec):
        args = []
    if 'avx512' in spec.target:
        args.append('--with-avx512')
    ...
    return args
```

Simple feature query

Specialized installations

(intel

Spack has added GitLab CI integration to automate package build pipelines

- Builds on Spack environments
 - Support auto-generating GitLab CI jobs
 - Can run in a Kube cluster or on bare metal runners at an HPC site
 - Sends progress to CDash


```
spack:
  definitions:
  - pkas:
    - readline@7.0
  - compilers:
    - '%gcc@5.5.0'
  - oses:
    - os=ubuntu18.04
    os=centos7
  specs:
  - matrix:
    [$pkas]
    - [$compilers]
    - [$oses]
  mirrors:
    cloud gitlab: https://mirror.spack.io
  gitlab-ci:
    mappings:
      - spack-cloud-ubuntu:
        match:
          - os=ubuntu18.04
        runner-attributes:
          tags:
            spack-k8s
          image: spack/spack builder ubuntu 18.04
      - spack-cloud-centos:
        match:
          os=centos7
        runner-attributes:
          tags:
            - spack-k8s
          image: spack/spack_builder centos 7
  cdash:
    build-group: Release Testing
    url: https://cdash.spack.io
    project: Spack
    site: Spack AWS Gitlab Instance
```

ECP is working towards a periodic, hierarchical release process

LLNL-PRES-806064

Automated builds using ECP CI will enable a robust, widely available HPC software ecosystem.

With pipeline efforts at E6 labs, users will no longer need to build their own software for high performance.

Spack focus areas in FY20

Multi-stage container generation with Spack

 Add support to Spack to generate *multi-stage* container builds that exclude build dependencies from artifacts automatically

Build Hardening with Spack Pipelines

Continue working with E4S team to harden container builds

Parallel builds

- "srun spack install" will use the entire allocation to build
- New concretizer based on fast ASP/SAT solvers
- Improved dependency models for compilers
 - icpc depends on g++ for its libstdc++, and other ABI nightmares

Join the Spack community!

- There are lots of ways to get involved!
 - Contribute packages, documentation, or features at github.com/spack/spack
 - Contribute your configurations to github.com/spack/spack-configs

- Join our Google Group (see GitHub repo for info)
- Join our **Slack channel** (see GitHub repo for info)
- Submit GitHub issues and talk to us!

Star us on GitHub! github.com/spack/spack

Follow us on Twitter!

@spackpm

We hope to make distributing & using HPC software easy!

