
LLNL-PRES-806064
This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

github.com/spack/spack

Spack 201
Intermediate Spack Tutorial

CORAL2 COE Spackathon
Los Alamos National Laboratory

November 5, 2019
Chicago, ILThe most recent version of these slides can be found at:

https://spack-tutorial.readthedocs.io

https://spack.readthedocs.io/en/latest/tutorial.html

LLNL-PRES-806064
2github.com/spack/spack

Download the latest version of slides and handouts at:

spack-tutorial.readthedocs.io

§ Spack GitHub repository:
http://github.com/spack/spack

§ Spack Reference Documentation:
http://spack.readthedocs.io

Tutorial Materials

Click v:latest at the
bottom of the sidebar

For more:

Then click lanl19
to get to this version

http://github.com/spack/spack
http://spack.readthedocs.io/

LLNL-PRES-806064
3github.com/spack/spack

Tutorial Presenters

Todd GamblinGreg Becker

LLNL-PRES-806064
4github.com/spack/spack

§ Major new features:
1. Chaining: use dependencies from external "upstream" Spack instances
2. Views for Spack environments (covered today)
3. Spack detects and builds specifically for your microarchitecture (not shown in tutorial)

• named, understandable targets like skylake, broadwell, power9, zen2
4. Spack stacks: combinatorial environments for facility deployment (covered today)
5. Projections: ability to build easily navigable symlink trees environments (covered today)
6. Support no-source packages (BundlePackage) to aggregate related packages
7. Extensions: users can write custom commands that live outside of Spack repo
8. ARM + Fujitsu compiler support
9. GitLab Build Pipelines: Spack can generate a pipeline from a stack (covered in slides)

§ Over 3,500 packages (~700 added since last year)

§ Full release notes: https://github.com/spack/spack/releases/tag/v0.13.0

Spack v0.13.1 is the latest release

https://github.com/spack/spack/releases/tag/v0.13.0

LLNL-PRES-806064
5github.com/spack/spack

1. Welcome & Overview 9:00 - 9:05
2. Core Spack Refresher 9:05 – 9:15
3. Developer Workflows 9:15 – 9:45
4. Environments, spack.yaml, spack.lock 9:45 - 10:30

5. -- 15 Minute Break --

6. Spack Stacks 10:45 - 11:15
7. Scripting and spack-python 11:15 - 11:40
8. More New Features & the Road Ahead 11:40 – 12:00

Tutorial Overview (times are estimates)

LLNL-PRES-806064
6github.com/spack/spack

Core Spack Refresher:
Specs, Packages, and Concretization

LLNL-PRES-806064
7github.com/spack/spack

§ Each expression is a spec for a particular configuration
— Each clause adds a constraint to the spec
— Constraints are optional – specify only what you need.
— Customize install on the command line!

§ Spec syntax is recursive
— Full control over the combinatorial build space

Spack provides a spec syntax to describe customized DAG
configurations

$ spack install mpileaks unconstrained
$ spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
$ spack install mpileaks@3.3 cppflags="-O3 –g3" set compiler flags
$ spack install mpileaks@3.3 target=skylake set target microarchitecture
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3 ^ dependency information

LLNL-PRES-806064
8github.com/spack/spack

Spack packages are templates
They use a simple Python DSL to define how to build

Metadata at the class level

Versions

Install logic
in instance methods

Dependencies
(note: same spec syntax)

Not shown: patches, resources, conflicts,
other directives.

from spack import *

class Kripke(CMakePackage):
"""Kripke is a simple, scalable, 3D Sn deterministic particle

transport proxy/mini app.
"""

homepage = "https://computation.llnl.gov/projects/co-design/kripke"
url = "https://computation.llnl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"

version(‘1.2.3’, sha256='3f7f2eef0d1ba5825780d626741eb0b3f026a096048d7ec4794d2a7dfbe2b8a6’)
version(‘1.2.2’, sha256='eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2efa039a86e0976f3a3’)
version('1.1’, sha256='232d74072fc7b848fa2adc8a1bc839ae8fb5f96d50224186601f55554a25f64a’)

variant('mpi', default=True, description='Build with MPI.’)
variant('openmp', default=True, description='Build with OpenMP enabled.’)

depends_on('mpi', when='+mpi’)
depends_on('cmake@3.0:', type='build’)

def cmake_args(self):
return [

'-DENABLE_OPENMP=%s’ % ('+openmp’ in self.spec),
'-DENABLE_MPI=%s' % ('+mpi’ in self.spec),

]

def install(self, spec, prefix):
Kripke does not provide install target, so we have to copy
things into place.
mkdirp(prefix.bin)
install('../spack-build/kripke', prefix.bin)

Base package
(CMake support)

Variants (build options)

Don’t typically need install() for
CMakePackage, but we can work
around codes that don’t have it.

LLNL-PRES-806064
9github.com/spack/spack

§ Each unique dependency graph is a unique
configuration.

§ Each configuration installed in a unique directory.
— Configurations of the same package can coexist.

§ Hash of entire directed acyclic graph (DAG) is
appended to each prefix.

§ Installed packages automatically find dependencies
— Spack embeds RPATHs in binaries.
— No need to use modules or set LD_LIBRARY_PATH
— Things work the way you built them

Spack handles combinatorial software complexity.

spack/opt/
linux-x86_64/

gcc-4.7.2/
mpileaks-1.1-0f54bf34cadk/

intel-14.1/
hdf5-1.8.15-lkf14aq3nqiz/

bgq/
xl-12.1/

hdf5-1-8.16-fqb3a15abrwx/
...

mpileaks

mpi

callpath dyninst

libdwarf

libelf

Installation Layout

Dependency DAG

Hash

LLNL-PRES-806064
10github.com/spack/spack

Concretization fills in missing configuration details
when the user is not explicit.

mpileaks ^callpath@1.0+debug ^libelf@0.8.11 User input: abstract spec with some constraints

Concrete spec is fully constrained
and can be passed to install.

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

callpath@1.0
%gcc@a4.7.3+debug

=linux-ppc64

dyninst@8.1.2
%gcc@4.7.3
=linux-ppc64

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

Abstract, normalized spec
with some dependencies.

mpileaks

mpi

callpath@1.0
+debug

dyninst

libelf@0.8.11

libdwarf

N
orm

alize

Concretize Store

spec:
- mpileaks:

arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
callpath: bah5f4h4d2n47mgycej2mtrnrivvxy77
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: 33hjjhxi7p6gyzn5ptgyes7sghyprujh
variants: {}
version: '1.0'

- adept-utils:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
boost: teesjv7ehpe5ksspjim5dk43a7qnowlq
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
variants: {}
version: 1.0.1

- boost:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies: {}
hash: teesjv7ehpe5ksspjim5dk43a7qnowlq
variants: {}
version: 1.59.0

...

spec.yaml

Detailed provenance is stored
with the installed package

LLNL-PRES-806064
11github.com/spack/spack

Use `spack spec` to see the results of concretization

$ spack spec mpileaks
Input spec

mpileaks

Concretized

mpileaks@1.0%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^adept-utils@1.0.1%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^boost@1.61.0%gcc@5.3.0+atomic+chrono+date_time~debug+filesystem~graph
~icu_support+iostreams+locale+log+math~mpi+multithreaded+program_options
~python+random +regex+serialization+shared+signals+singlethreaded+system
+test+thread+timer+wave arch=darwin-elcapitan-x86_64

^bzip2@1.0.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^zlib@1.2.8%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^openmpi@2.0.0%gcc@5.3.0~mxm~pmi~psm~psm2~slurm~sqlite3~thread_multiple~tm~verbs+vt arch=darwin-elcapitan-x86_64
^hwloc@1.11.3%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^libpciaccess@0.13.4%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^libtool@2.4.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^m4@1.4.17%gcc@5.3.0+sigsegv arch=darwin-elcapitan-x86_64
^libsigsegv@2.10%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^callpath@1.0.2%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^dyninst@9.2.0%gcc@5.3.0~stat_dysect arch=darwin-elcapitan-x86_64

^libdwarf@20160507%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^libelf@0.8.13%gcc@5.3.0 arch=darwin-elcapitan-x86_64

LLNL-PRES-806064
12github.com/spack/spack

Developer Workflows

Follow script at http://spack-tutorial.rtfd.io
Under “Tutorial: Spack 101"

http://spack.rtfd.io/

LLNL-PRES-806064
13github.com/spack/spack

Environments,
spack.yaml and spack.lock

Follow script at http://spack-tutorial.rtfd.io
Under “Tutorial: Spack 101"

http://spack.rtfd.io/

LLNL-PRES-806064
14github.com/spack/spack

Spack Stacks

Follow script at http://spack-tutorial.rtfd.io
Under “Tutorial: Spack 101"

http://spack-tutorial.rtfd.io/

LLNL-PRES-806064
15github.com/spack/spack

Scripting and spack-python

Follow script at http://spack-tutorial.rtfd.io
Under “Tutorial: Spack 101"

http://spack-tutorial.rtfd.io/

LLNL-PRES-806064
16github.com/spack/spack

More New Features
and the Road Ahead

LLNL-PRES-806064
17github.com/spack/spack

§ We have added security features to the
open source GitLab product.
— Integration with center identity management
— Integration with schedulers like SLURM, LSF

§ We are democratizing testing at Livermore Computing
— Users can run tests across 30+ machines by editing a file
— Previously, each team had to administer own servers

§ ECP sites are deploying GitLab CI for users
— All HPC centers can leverage these improvements
— NNSA labs plan to deploy common high-side CI infrastructure
— We are developing new security policies to allow external

open source code to be tested safely on key machines

We have been heavily involved in the
ECP CI project.

. . .

User commits
to GitLab

GitLab test runners are now
integrated with HPC machines

LLNL-PRES-806064
18github.com/spack/spack

§ We have developed a cross-platform library to detect
and compare microarchitecture metadata
— Detects based on /proc/cpuinfo (Linux), sysctl (Mac)
— Allows comparisons for compatibility, e.g.:

§ Key features:
— Know which compilers support which chips/which flags
— Determine compatibility
— Enable creation and reuse of optimized binary packages
— Easily query available architecture features for portable

build recipes

§ We will be extracting this as a standalone
library for other tools & languages
— Hope to make this standard!

Spack now understands specific target microarchitectures

$ spack install lbann target=cascadelake

$ spack install petsc target=zen2

Specialized installationsSimple feature query

Extensive microarchitecture knowledge

skylake > broadwell
zen2 > x86_64

LLNL-PRES-806064
19github.com/spack/spack

§ Builds on Spack environments
— Support auto-generating GitLab CI jobs
— Can run in a Kube cluster or on bare metal runners at an

HPC site
— Sends progress to CDash

Spack has added GitLab CI integration to
automate package build pipelines

LLNL-PRES-806064
20github.com/spack/spack

ECP is working towards a periodic, hierarchical release process

• ECP teams work to ensure that libraries and components work together
– Historically, HPC codes used very few dependencies

• Now, groups of teams work together on small releases of
“Software Development Kits”

• SDKs are rolled into a larger, periodic release.

Develop

Package

Build

Test

Deploy

Math
Libraries

Develop

Package

Build

Test

Deploy

Visualization

Develop

Package

Build

Test

Deploy

Programming
Models

…

Build

TestDeploy

Integrate

E4S
ECP-wide

software release
https://e4s.io

LLNL-PRES-806064
21github.com/spack/spack

Automated builds using ECP CI will enable a robust, widely
available HPC software ecosystem.

Spack users

Automated
package
builds

With pipeline efforts at E6 labs, users will no longer need to build their own software for high performance.

Per-laboratory pipelines
Public and private

package repositories

LLNL-PRES-806064
22github.com/spack/spack

Spack focus areas in FY20

• Multi-stage container generation with Spack
– Add support to Spack to generate multi-stage container builds that

exclude build dependencies from artifacts automatically

• Build Hardening with Spack Pipelines
– Continue working with E4S team to harden container builds

• Parallel builds
– “srun spack install” will use the entire allocation to build

• New concretizer based on fast ASP/SAT solvers

• Improved dependency models for compilers
– icpc depends on g++ for its libstdc++, and other ABI nightmares

Build-time artifacts
Run-time artifacts

1

2 5

3 4

B

B

76

L

L

8
R

BL

Multi-stage build
analysis

spack container build

LLNL-PRES-806064
23github.com/spack/spack

§ There are lots of ways to get involved!
— Contribute packages, documentation, or features at github.com/spack/spack
— Contribute your configurations to github.com/spack/spack-configs

§ Talk to us!
— Join our Google Group (see GitHub repo for info)
— Join our Slack channel (see GitHub repo for info)
— Submit GitHub issues and talk to us!

Join the Spack community!

@spackpm

We hope to make distributing & using HPC software easy!

github.com/spack/spack
Star us on GitHub! Follow us on Twitter!

