Managing HPC Software Complexity
with Spack

CINECA Full Day Tutorial
February 13th, 2022

The most recent versionof these slides can be found at:
https://spack-tutorial.readthedocs.io

Tutorial Materials

Find these slides and associated scripts here:

spack-tutorial.rtfd.io

We also have a chat room on Spack slack.
You can join here:

slack.spack.io
Join the #tutorial channel!

You can ask questions here after the conference is over.
Over 2,000 people can help you on Slack!

Join #tutorial on Slack: slack.spack.io

@ Spack

latest

Main Spack Documentation

Basic Installation Tutorial
Configuration Tutorial
Package Creation Tutorial

Developer Workflows Tutorial

& Read the Docs

latest sc18 scl7 sclé rikenl9
pearcl9 nsfl9 lanl19 isc19 ecpl9

HTML

E Project Home Builds Downloads

{ View Edit

Materials: spack-tutorial.readthedocs.io

Docs » Tutorial: Sp

Tutorial: S

This is a full-day int
Practice and Experi
2019.

You can use these r
and read the live de

Slides

Practice and Experi
Chicago, IL, USA.

Live Demos

We provide scripts
sections in the slide

1. We provide 1
tutorial on y«
the containe

2. When we hc
unfamiliar wi

You should now be

® -

Tutorial Presenters

Massimiliano Culpo
@alalazo

Join #tutorial on Slack: slack.spack.io

Harmen Stoppels
@haampie

Materials: spack-tutorial.readthedocs.io

Agenda (approximate)

Morning

Intro 9:30 am
Basics 9:45 am
Concepts 10:30 am
Environments 11:30 am
Configuration 12:15 am

Lunch 1:00 pm

Join #tutorial on Slack: slack.spack.io

Materials: spack-tutorial.readthedocs.io

Afternoon
Packaging 2:00 pm
Binary and Source Mirrors 3:00 pm

Break 3:30 pm

Stacks 4:00 pm
Developer workflows 5:00 pm
Roadmap / Questions 5:25 pm

»

Modern scientific codes rely on icebergs of dependency libraries

71 packages
188 dependencies

MFEM: LBANN: Neural Nets for HPC

—

fate NS

,,,,, = 31 packages,
69 dependencies

([

A y e
A = S—

S e
Y sEt
':ﬁﬁ.-ag‘!k-ﬁum,{"‘gh
[AN \ ‘

r-condop: ‘ e IS
R Genome Data Analysis Tools

] T

YN

N

ECP’s E4S stack is even larger than these codes

= - TR = oo ==a men = @ - - == = = o e e eme
o e = oae oe | e) e o e e | o = e) ez s e |/
o= e L e =) o= sos | m oo o Sdean & mal ==
e = = o= mas | mesesE |l el B e wan s @ e o || ||| el
== = = ermome e = ° =y = C
=) e = || e | e e = - e =
= o=) = = = = | e = = @ o
= o =3 = = B] e e = & E o == =
= = o= = == e= == = e o bemrm e | emme = = pen e e
o= = e = e = =) sche)| e = e e = e
=] o= = e] = e el
ey — e = =oes e e | e ®
= e = e e emmsme | asos =
e e = = =
= [EEE= = e ==
= = = e
" £ -
= e == =e =
e esemen =
= e

— Red boxes are the packages in it (about 100)

— Blue boxes are what else you need to build it (about 600)
— It’s infeasible to build and integrate all of this manually

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Some fairly common (but questionable) assumptions
made by package managers (conda, pip, apt, etc.)

= 1:1 relationship between source code and binary (per platform)
— Good for reproducibility (e.g., Debian)
— Bad for performance optimization

= Binaries should be as portable as possible
— What most distributions do
— Again, bad for performance

= Toolchain is the same across the ecosystem

— One compiler, one set of runtime libraries
— Or, no compiler (for interpreted languages)

Outside these boundaries, users are typically on their own

High Performance Computing (HPC)
violates many of these assumptions

Code is typically distributed as source

— With exception of vendor libraries, compilers
P P Current

Often build many variants of the same package Oak Ridge National Lab
— Developers’ builds may be very different Power9 / NVIDIA
— Many first-time builds when machines are new

Fujitsu/ARM a64fx

Code is optimized for the processor and GPU S
— Must make effective use of the hardware 1l

— Can make 10-100x perf difference Lawrence Berkeley —
: Argonne National Lab
National Lab Intel Xeon / X
AMD Zen / NVIDIA niel reon/ ze

Rely heavily on system packages
— Need to use optimized libraries that come with machingpcoming

— Need to use host GPU libraries and network
FRONTIER
Multi-language

— G, C++, Fortran, Python, others Oak Ridge National Lab | awrence Livermore
all in the same ecosystem AMD Zen / Radeon National Lab
AMD Zen / Radeon

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 8

What about containers?

Containers provide a great way to reproduce and distribute an
already-built software stack

Someone needs to build the container!
— This isn’t trivial
— Containerized applications still have hundreds of dependencies

Using the OS package manager inside a container is insufficient
— Most binaries are built unoptimized
— Generic binaries, not optimized for specific architectures

HPC containers may need to be rebuilt to support many .
different hosts, anyway. 000

— Not clear that we can ever build one container for all facilities Charliecloud
— Containers likely won’t solve the N-platforms problem in HPC

We need something more flexible to build the containers

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 9

Spack enables software distribution for HPC

» Spack automates the build and installation of scientific software

* Packages are parameterized, so that users can easily tweak and tune configuration

No installation required: clone and go

$ git clone https://github.com/spack/spack
$ spack install hdf5

Simple syntax enables complex installs

$ spack install hdf5@1.10.5 $ spack install hdf5@1.10.5 cppflags="-03 —g3"
$ spack install hdf5@1.10.5 %clang@6.0 $ spack install hdf5@1.10.5 target=haswell
$ spack install hdf5@1.10.5 +threadssafe $ spack install hdf5@1.10.5 +mpi “mpich@3.2

* Ease of use of mainstream tools, with flexibility needed for HPC

* In addition to CLI, Spack also:
* Generates (but does not require) modules
« Allows conda/virtualenv-like environments

* Provides many devops features (Cl, container generation, more)

Join #tutorial on Slack: slack.spack.io

Materials: spack-tutorial.readthedocs.io

O github.com/spack/spack

What'’s a package manager?

= Spack is a package manager
— Does not a replace Cmake/Autotools
— Packages built by Spack can have any
build system they want

= Spack manages dependencies
— Drives package-level build systems
— Ensures consistent builds

= Determining magic configure lines

takes time
— Spack is a cache of recipes

Join #tutorial on Slack: slack.spack.io

package * Manages package installation
* Manages dependency relationships

Manager » May drive package-level build systems

High Level [ramyymmme

Build Handle library abstractions
System - Generate Makefiles, etc.

Low Level [RyHsgres

BU"d * Handles dependencies among
System commands in a single build

Materials: spack-tutorial.readthedocs.io @ 11

Who can use Spack?

People who want to use or distribute software for HPC!

1. End Users of HPC Software
— Install and run HPC applications and tools

2. HPC Application Teams
— Manage third-party dependency libraries

3. Package Developers
— People who want to package their own software for distribution

4. User support teams at HPC Centers
— People who deploy software for users at large HPC sites

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack sustains the HPC software ecosystem
with the help of its many contributors

Over 6,700 software packages
Over 1,100 contributors

Contributions (lines of code) over time in packages, by organization

LLNL OVGU Heidelberg
200000 4 mm ANL/UIUC mm Kitware mmm CINECA
lowa RIKEN OpenFOAM
~ . B |owa State W Hamburg B Kirchhoff
8 150000 4 AMD Max Planck Genentech
) - = CERN = CEA . SjTU
c‘ A T4 e Cscs 3vGeomatics Intel
* - { RIT mmm HZDR B Oregon
e 100000 | wwm Hisilicon SNL NREL
X LANL == FAU = UZH
\' BN EPFL LBL Fermilab
50000 - ANL BN Perimeterinst WEE Rice
I ORNL B Fujitsu
0 T T
”9\?} w@? '»6@ 'v°\'b 'v&« 'vs'% ’LQ@ 'P’& ’I«Q,i\/ WQ’Q 'v@?)

|D 10ayActiveusers | 0 70ayActiveUsers | [14Day Active Users | 7 28 Day Active Users |

Most package contributions are not from DOE
But they help sustain the DOE ecosystem!

Nearly 6,000 monthly active users
(per documentation site)

1 Day Active Users

317
5o Total: 100.00% @7

Materials: spack-tutorial.readthedocs.io @ 13

Spack is critical for ECP’s mission to create a
robust, capable exascale software ecosystem.

Q4K Rinse g, Pueee e Approach
5 ENERGY r'l'ﬁyjl‘ FHEn - o
T

AMDD

https://eds.io

Dependents by Producer

EXASCALE COMPUTING PROJECT
= Spack will be used to build software for the three upcoming

6

5

4

U.S. exascale systems 3 I I I I I
: i i l 11l
£ ™ & L > & o+ (s & & K & & N o @ & ®
R AP G P I IO P P SN
aCritical D¢ = Important De D

= ECP has built the Extreme Scale Scientific Software Stack (E4S) ‘
with Spack — more at https://e4s.io

= Spack will be integral to upcoming ECP testing efforts. Spack is the most depended-upon
project in ECP

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 14

https://e4s.io/

One month of Spack development is pretty busy!

October 12, 2021 — November 12, 2021

Overview

e S
671 Active Pull Requests

- 536 11135
Merged Pull Requests Open Pull Requests

Excluding merges, 173 authors have pushed 571 commits to
develop and 634 commits to all branches. On develop, 703
files have changed and there have been 20,730 additions
and 3,807 deletions.

Period: 1 month ~

145 Active Issues

©75 ®70

Closed Issues New Issues

80

60

40
0 [T -

iLiREER LA "ERNSNE

© 1 Release published by 1 person

© v0.17.0
published 7 days ago

$~ 536 Pull requests

Join #tutorial on Slack: slack.spack.io

merged by 151 people

Materials: spack-tutorial.readthedocs.io

Spack’s widespread adoption has drawn
contributions and collaborations with many vendors

AWS invests significantly in cloud credits for Spack build farm
— Joint Spack tutorial with AWS had 125+ participants

— Joint AWS/AHUG Spack Hackathon drew 60+ participants aWS AM D n

AMD has contributed ROCm packages and compiler support
— 55+ PRs mostly from AMD, also others
— ROCm, HIP, aocc packages are all in Spack now

1 (inteD
HPE/Cray is doing internal Cl for Spack packages, in the Cray environment l n tel

Intel contributing OneApi support and licenses for our build farm @D

NVIDIA contributing NVHPC compiler support and other features n‘"DlA a r m

Fujitsu and RIKEN have contributed a huge number of packages for
ARM/a64fx support on Fugaku

Linaro

[o®)
ARM and Linaro members contributing ARM support h FUJITSU
— 400+ pull requests for ARM support from various companies

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 16

Spack v0.19.1 was released last week!

= Major new features in v0.19:

Package requirements

Environment Ul improvements
Packages with multiple build systems
Compiler/variant propagation
Enhanced git versions

Better Cray EX Support

Testing and Cl improvements

8. Experimental binding link model

N keWwhNR

*Bold items covered in today’s tutorial

O github.com/spack/spack

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 17

Spack is not the only tool that automates builds

1. “Functional” Package Managers

A - - — Nix https://nixos.org/
A v — GNU Guix https://www.gnu.org/s/guix/
X Guix
, 2. Build-from-source Package Managers
N (] .
a'\' b — Homebrew, LinuxBrew http://brew.sh
.i] .ﬂ — MacPorts https://www.macports.org
VAR — Gentoo https://gentoo.org
N

\/ Other tools in the HPC Space:

= Easybuild http://hpcugent.github.io/easybuild/
— Aninstallation tool for HPC
— Focused on HPC system administrators — different package model from Spack
— Relies on a fixed software stack — harder to tweak recipes for experimentation

= Conda https://conda.io

£ — Very popular binary package manager for data science
bON DA — Not targeted at HPC; generally has unoptimized binaries

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 18

https://nixos.org/
https://www.gnu.org/s/guix/
http://brew.sh/
https://www.macports.org/
https://gentoo.org/
http://hpcugent.github.io/easybuild/
https://conda.io/

Hands-on Time: Spack Basics

Follow script at spack-tutorial.readthedocs.io

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

http://spack.rtfd.io/

Core Spack Concepts

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Most existing tools do not support combinatorial versioning

= Traditional binary package managers
— RPM, yum, APT, yast, etc.
— Designed to manage a single stack.
— Install one version of each package in a single prefix (/usr).
— Seamless upgrades to a stable, well tested stack

= Port systems
— BSD Ports, portage, Macports, Homebrew, Gentoo, etc.
— Minimal support for builds parameterized by compilers, dependency versions.

= Virtual Machines and Linux Containers (Docker)
— Containers allow users to build environments for different applications.
— Does not solve the build problem (someone has to build the image)
— Performance, security, and upgrade issues prevent widespread HPC deployment.

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack provides a spec syntax to describe customized package

configurations
$ spack install mpileaks unconstrained
$ spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
$ spack install mpileaks@3.3 cppflags="-03 —-g3" set compiler flags
$ spack install mpileaks@3.3 target=cascadelake set target microarchitecture
$ spack install mpileaks@3.3 Ampich@3.2 %gcc@4.9.3 A dependency constraints

= Each expression is a spec for a particular configuration
— Each clause adds a constraint to the spec
— Constraints are optional — specify only what you need.
— Customize install on the command line!

= Spec syntax is recursive
— Full control over the combinatorial build space

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack packages are parameterized using the spec syntax
Python DSL defines many ways to build

def

def

variant('mpi',
variant('openmp', default=True, description='Build with OpenMP enabled.’)

from spack import x

class Kripke(CMakePackage):
"""Kripke is a simple, scalable, 3D Sn deterministic particle transport mini-app."""

homepage = "https://computation.llnl.gov/projects/co-design/kripke"

url = "https://computation.llnl.gov/projects/co-design/download/kripke—-openmp-1.1.tar.gz"
version(‘1.2.3’, sha256='3f7f2eef0d1ba5825780d626741eb0b3f0262a096048d7ec4794d2a7dfbe2b8a6")
version(‘1.2.2’', sha256="'eaf9ddf562416974157b34d00c3alc880fc5296fce2aa2efa®39a86e0976f3a3")
version('1l.1’, sha256='232d74072fc7b848fa2adc8albc839ae8fb5f96d50224186601f55554a25f64a’)

default=True, description='Build with MPI.’)

depends_on('mpi', when='+mpi’)
depends_on('cmake@3.0:', type='build’)

cmake_args(self):

return [
'-DENABLE_OPENMP=%s’ % ('+openmp’ in self.spec),
'-DENABLE_MPI=%s' % ('+mpi’ in self.spec),

1

install(self, spec, prefix):
mkdirp(prefix.bin)
install('../spack-build/kripke', prefix.bin)

One package.py file per software project!

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

-

Py

\

Base package
(CMake support)

Metadata at the class level

Versions

Variants (build options)

Dependencies
(same spec syntax)

Install logic
in instance methods

Don't typically need install() for
(MakePackage, but we can work
around codes that don’t have it.

<€@;> 23

Conditional variants simplify packages

CudaPackage: a mix-in for packages that use CUDA
class (PackageBase):

Ve AL g IR FEIE 2 cuda is a variant (build option)
description="Build with CUDA')

variant('cuda_arch’, cuda_arch is only present
description="'CUDA architecture’, if cuda is enabled
values=any_combination_of(cuda_arch_values),
when="+cuda")

dependency on cuda, but only

depends_on('cuda', when='"+cuda') if cuda is enabled

depends_on('cuda@9.0:", when="cuda_arch=70")
depends_on('cuda@9.0: ", when="cuda_arch=72")
depends_on('cuda@10.0:", when="'cuda_arch=75")

constraints on cuda version

conflicts('%gcc@9:', when='+cuda Acuda@:10.2.89 target=x86_64:"') compiler support for x86_64
conflicts('%gcc@9:', when='+cuda Acuda@:10.1.243 target=ppc6dle:') REIle ppc641e

There is a lot of expressive power in the Spack package DSL.

Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io ’\1,1:‘ 24

Spack Specs can constrain versions of dependencies

mpileaks

=

\

callpath

libdwarf

™ dyninst

libelf

$ spack install mpileaks %intel@12.1 Alibelf@0.8.12

= Spack ensures one configuration of each library per DAG
— Ensures ABI consistency.
— User does not need to know DAG structure; only the dependency names.

= Spack can ensure that builds use the same compiler, or you can mix
— Working on ensuring ABI compatibility when compilers are mixed.

Join #tutorial on Slack: slack.spack.io

Materials: spack-tutorial.readthedocs.io

Spack handles ABl-incompatible, versioned interfaces like MPI

mpileaks

callpath

mpi

libdwarf

= mp1 is a virtual dependency

dyninst

| libelf

= |nstall the same package built with two different MPI implementations:

$ spack install mpileaks Amvapich@l.9

$ spack install mpileaks Aopenmpi@l.4:

= Let Spack choose MPI implementation, as long as it provides MPI 2 interface:

$ spack install mpileaks Ampi@2

Join #tutorial on Slack: slack.spack.io

Materials: spack-tutorial.readthedocs.io

Concretization fills in missing configuration details

when the user is not explicit.

mpileaks ~callpath@l.0+debug ~libelf@0.8.11

mpileaks

\

callpath@l.o
+debug

.

@ aZI[ewIoN

mpi

o Concretize
yninst

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

\

callpath@l.o
%gcc@a4.7.3+debug
=linux-ppc64

L\

\

libdwarf

/

libelf@0.8.11

mpich@3.0.4 dyninst@s. 1.2 Store
%gcc@4.7.3 %gcc@4.7.3
=linux-ppc64 =linux-ppc64

libdwarf@20130729

%gcc@4.7.3
=linux-ppc64

/

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

Abstract, normalized spec
with some dependencies.

Join #tutorial on Slack: slack.spack.io

Concrete spec is fully constrained
and can be passed to install.

Materials: spack-tutorial.readthedocs.io

User input: abstract spec with some constraints

spec.yaml

spec:
- mpileaks:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2
dependencies:

adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
callpath: bah5f4h4d2n47mgycej2mtrnrivvxy77

mpich: aa4ar6ifj23yijgmdabeakpejcliz2t3
hash: 33hjjhxi7p6gyznSptgyes7sghyprujh
variants: {}
version: '1.0'
- adept-utils:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2
dependencies:
boost: teesjv7ehpeSksspjim5dk43a7gnowlq
mpich: aa4ar6ifj23yijgmdabeakpejcliz2t3
hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
variants: {}
version: 1.0.1
- boost:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2
dependencies: {}
hash: teesjv7ehpeSksspjim5dk43a7gnowlq
variants: {}
version: 1.59.0

Detailed provenance is stored

with the installed package

@27

Hashing allows us to handle combinatorial complexity

Dependency DAG . Eagh unique dependency graph is a
unique configuration.
/ mpi
mpileaks /
8 atipath — o e = Each configuration in a unique directory.
dyninst |— _p| libelf

— Multiple configurations of the same
package can coexist.

Installation Layout

Hash of entire directed acyclic graph

opt . .
— spack (DAG) is appended to each prefix.
F— linux-rhel7-skylake
I L— gcc-8.3.0
| F— mpileaks-1.0-hc4sm4vuzpmdznmvrfzridowZmkpheZe i i
I F— callpath-1.0.4-daqqpssxb6gbfrztsezkmhus3xoflbsy InSta“ed pa_CkageS aUtomatlca”y flnd
| — openmpi-4.1.4-u64v26igxvxyn23hysmklfums6tgjvsr dependencies
| F— dyninst-12.1.0-u64v26igxvxyn23hysmklfumsétgjvsr . . .
| F— libdwarf-20180129-u5eawkvaoc7vonabebnndkcfwuv233cj - SpaCk embeds RPATHs in binaries.
| L— 1libelf-0.8.13-x46g4wm46ay4pltriiijbgizxjrhbaka6 — No need to use modules or set

LD_LIBRARY_PATH
— Things work the way you built them

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 28

An isolated compilation environment allows Spack

to easily swap compilers

Spack
Process

do_install()

Install dep1 Install dep2 TR Install package

e e e e e e e e e e e e =

Build

Set up environment
Process
CC

CXX
F77

FC

spack/env/spack-cc SPACK_CC
spack/env/spack-c++ SPACK_CXX
spack/env/spack-f77 SPACK_F77
spack/env/spack-f90 SPACK_FC

/opt/ic-15.1/bin/icc
/opt/ic-15.1/bin/icpc
/opt/ic-15.1/bin/ifort
/opt/ic-15.1/bin/ifort

PATH = spack/env:$PATH
CMAKE_PREFIX_PATH
LIBRARY_PATH

install(Q)

1
1
1
1
1
1
1
1
1
1
1
: PKG_CONFIG_PATH
1
1
1
1
1
1
1
1
1
1

= Forked build process isolates environment for each build.
Uses compiler wrappers to:

Add include, lib, and RPATH flags
Ensure that dependencies are found automatically
Load Cray modules (use right compiler/system deps)

| Compiler wrappers

| (spack-cc, spack-c++, spack-f77, spack-f90)

-I /depl-prefix/include
-L /depl-prefix/lib
-W1,-rpath=/depl-prefix/lib

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

We can configure Spack to build with external software

mpileaks ~callpath@l.0+debug
~openmpi ~libelf@0.8.11

packages.yaml

packages:
mpi:
buildable:
paths:

C>si~r'
4

False

openmpi@®2.0.0 %gcc@4.7.3 arch=linux-rhel6-ppc64:
/path/to/external/gcc/openmpi-2.0.0

openmpi@l1.10.3 %gcc@4.7.3 arch=1linux-rhel6-ppc64:
/path/to/external/gcc/openmpi-1.10.3

Users register external packages in a
configuration file (more on these later).

Join #tutorial on Slack: slack.spack.io

mpileaks @2.3
gcc@4.7.3

arch=linux-redhat 6-ppc64

callpath@1.0
gcc@4.7.3
arch=linux-redhat 6-ppc64
+debug

/

N

openmpi@2.0.0
gcc@4.7.3
arch=linux-redhat 6-ppc64

dyninst @8.1.2
gcc@4.7.3
arch=linux-redhat 6-ppc64

——F--

hwloc@1.11.3
gcc@4.7.3
arch=linux-redhat 6-ppc64

N

libdwarf @20130729
gcc@4.7.3
arch=linux-redhat 6-ppc64

/

libpciaccess @0.13.4
gcc@4.7.3
arch=linux-redhat 6-ppc64

libelf@0.8.11
gcc@4.7.3
arch=linux-redhat 6-ppc64

libtool@2.4.6
gcc@4.7.3
arch=linux-redhat 6-ppc64

m4@1.4.17
gcc@4.7.3
arch=linux-redhat 6- ppc64

libsigsegv @2.10
gcc@4.7.3
arch=linux-redhat 6- ppc64

mpileaks @2.3
gcc@4.7.3
arch=linux-redhat 6-ppc64

callpath@1.0
gcc@4.7.3
arch=linux-redhat 6- ppc64

+debug
openmpi@2.0.0

dyninst @8.1.2
gcc@4.7.3

gcc@4.7.3
arch=linux-redhat 6- ppc64 arch=linux-redhat 6- ppc64

libdwarf @20130729
gcc@4.7.3
arch=linux-redhat 6- ppc64

lielf@0.8.11
gcc@4.7.3
arch=linux-redhat 6- ppc64

v
/path/to/external/gcc/openmpi-2.0.0

Spack prunes the DAG when adding external packages.

Materials: spack-tutorial.readthedocs.io

@30

Spack package repositories allow stacks to be layered

LLNL MARBL multi-physics
application

linl.wci.mapp

Common internal

$ spack repo create /path/to/my_repo

linl.wci

$ spack repo add my_repo packages

$ spack repo list

==> 2 package repositories. Open Source Spack

my_repo /path/to/my_repo packages

builtin spack/var/spack/repos/builtin builtin

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 31

Spack mirrors

Original source

on internet EE—
= Spack allows you to define mirrors: \\
= Directories in the filesystem ‘\
= Onaweb server \ S3 Bucket

= |n an S3 bucket \

Mirrors are archives of fetched tarballs, repositories, @

|
1
|
|
and other resources needed to build \ |

= Can also contain binary packages]

. @ .

\

By default, Spack maintains a mirror in \ |l é

var/spack/cache of everything you’ve fetched so far. \ !

You can host mirrors internal to your site Local Cache @ g Spack
= See the documentation for more details users

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 32

The concretizer includes information from Dependency solving
packages, configuration, and CLI is NP-hard

Contributors

-~
=

LA;J ; £9

s A :
r‘ package.py repository

new versions
new dependencies
new constraints

N >@ concretizer
spack default config
developers nackages . yam 1 [e

\.
admins, local preferences config >
users packages . yaml
USETS local environment config T\ EEE | N

spack. yaml Concrete spec is K
fully constrained
sors Command line constraints and can be built.
u
spack install hdf5@1.12.0 +debug

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 33

We use logic programming to simplify package solving

New concretizer leverages Clingo (see potassco.org)

Clingo is an Answer Set Programming (ASP) solver
— ASP looks like Prolog; leverages SAT solvers for speed/correctness
— ASP program has 2 parts:

1. Large list of facts generated from our package repositories and config

2. Small logic program (~800 lines)
- includes constraints and optimization criteria

New algorithm on the Spack side is conceptually simpler:

— Generate facts for all possible dependencies, send to logic program
— Optimization criteria express preferences more clearly

— Build a DAG from the results

New concretizer solves many specs that old concretizer can’t
— Backtracking is a huge win — many issues resolved
— Conditional logic that was complicated before is now much easier

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Some facts for the HDF5 package

@34

--fresh only reuses builds if hashes match

y libdwarf
— ™ caorn [T "] 1. Resolve metadata n Hash matches are very
! , g! sensitive to small changes
I

//-/;: .

mpileaks

2. Create per-node hashes

«---=--

! v P

: cwxdgqwk4bkamfagjrglmxfudbhasyt74 = |n ma Ny cCases, a satl Sfy| ng
I go2af23r2npatxdtna3fmwkeennywixp cac h e d or a | rea dy | nsta I | e d
\

k2yumgxwq61i jubivfpbjpmrrbzyqcoot
1

- spec can be missed
4xxvh5'lch?gm32ngt'i.xcm20daer'3cvvb

Package = Nix, Spack, Guix, Conan,
cache and others reuse this way

-

74mwnxgn6nujehpyyalhwizwojwnSzga

v

6zvh4ueem6fSyrcfugh67k2hrixbgb
2VITeamoToyrettg rooges 3. Query for exact hash match

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 35

--reuse (now the default) is more aggressive

« --reuse tells the solver about all the installed packages!
« Add constraints for all installed packages, with their hash as the associated ID:

installed_hash("openssl","lwatuuysmwkhuahrncywvn77icdhsémn"

imposed_constraint
imposed_constraint
imposed_constraint
imposed_constraint
imposed_constraint
imposed_constraint

imposed_constraint
imposed_constraint
imposed_constraint
imposed_constraint
imposed_constraint
imposed_constraint

Join #tutorial on Slack: slack.spack.io

"lwatuuysmwkhuahrncywvn77icdhsémn™
"lwatuuysmwkhuahrncywvn?77icdhsémn"
"lwatuuysmwkhuahrncywvn?77icdhsémn"
"lwatuuysmwkhuahrncywvn?77icdhsémn"
"1watuuysmwkhuahrncywvn77icdhsémn"
"lwatuuysmwkhuahrncywvn77icdhsémn"
"lwatuuysmwkhuahrncywvn77icdhsémn”
"1lwatuuysmwkhuahrncywvn77icdhsémn™
"lwatuuysmwkhuahrncywvn77icdhsémn™
"lwatuuysmwkhuahrncywvn77icdhsémn™
"lwatuuysmwkhuahrncywvn77icdhsémn™
"lwatuuysmwkhuahrncywvn77icdhsémn"

Materials: spack-tutorial.readthedocs.io

non

"node","openssl"

"version","openssl","1.1.1g"
"node_platform_set","openssl","darwin"
"node_os_set","openssl","catalina"
"node_target_set","openssl", "x86_64"
"variant_set","openssl","systemcerts","True").
"node_compiler_set","openssl","apple-clang”
"node_compiler_version_set","openssl","apple-clang","12.0.0").
"concrete","openssl”
"depends_on","openssl","zlib","build"
"depends_on","openssl","zlib","1ink"

"hash","z1ib", "x2anksgssxsxa7pcnhzg5k3dhgacglze").

non

Telling the solver to minimize builds is surprisingly simple in ASP

1. Allow the solver to choose a hash for any package:

hash(Package, Hash installed_hash(Package, Hash 1 node(Package

2. Choosing a hash means we impose its constraints:

impose(Hash hash(Package, Hash

3. Define a build as something without a hash:

build(Package hash(Package, _), node(Package

4. Minimize builds!
1@100,Package : build(Package

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

With and without --reuse optimization

spackle):solver solve -I1 hdf5

=> Best of 9 considered solutions

==> Optimization Criteria:

Priority Criterion Installed ToBuild

number of packages to build (vs. reuse) = 20
deprecated versions used o 0
version weight
number of non-default variants (roots)
preferred providers for roots
default values of variants not being used (roots)
number of non-default variants (hon-roots)
preferred providers (non-roots)
compiler mismatches
0S mismatches
non-preferred 0S's
version badness
default values of variants not being used (non-roots)
non-preferred compilers
target mismatches
non-preferred targets

SRR N N N R R RN

hdf5@1.10.7: ~cxx~fortran~hl~ipo~java+mpi+shared~szip~threadsafe+tools api=default Y
Acmake@3.21.4 ~doc+ncurses+openssl+ownlibs~qt build_type=Release
Ancurses@6. 2. ~symlinks+termlib abi=none
Apkgconf@l.8. o
Aopenssl@1.1.11 ~docs certs=system
Aperl@5.34.9 +cpanm+shared+threads
Aberkeley-db@18.1. 49 +cxx~docs+stl patches=b231fcc4d5cff@5e5c3a4814
Abzip2@1.0.8 ~debug~pic+shared
Adiffutils@s. g
Alibiconv@l. 16 libs=shared,static
Agdbm@1.. 19
Areadline@s. 1’
Az1ib@1.2 .11 +optimize+pic+shared
Aopenmpi@4.1.1! ~atomics~cuda~cxx~cxx_exceptions+gpfs~internal-hwloc~java~legac:
Ahwloc@?2.6.0! ~cairo~cuda~gl~libudev+libxml2~netloc~nvml~opencl~pci~rocm+shd
Alibxml2@2.9.12 ~python
Axz@5.2.5 ~pic libs=shared,static
Alibevent@?2.1.12: +openssl
Aopenssh@8. 7p1!
Alibedit@3.1-20210216;

Pure hash-based reuse: all misses

spackle): spack: solve --reuse -I1 hdf5
> Best of 10 considered solutions.
> Optimization Criteria:
Priority Criterion
number of packages to build (vs. reuse)
deprecated versions used
version weight
number of non-default variants (roots)
preferred providers for roots
default values of variants not being used (roots)
number of non-default variants (non-roots)
preferred providers (non-roots)
compiler mismatches
0S mismatches
non-preferred 0S's
version badness
default values of variants not being used (non-roots)
non-preferred compilers
target mismatches
non-preferred targets

Installed ToBuild

.
SUFROSOOOONSOSSSS !
OO PO H

hdf5@1.10.7: ~cxx~fortran~hl~ipo~java+mpi+shared~szip~threadsafe+tools api=defaul
Acmake@3.21. 1 ~doc+ncurses+openssl+ownlibs~qt build_type=Release
Ancurses@6. 2! ~symlinks+termlib abi=none
Sk ~docs+systemcerts
Az1ib@1.2.11! +optimize+pic+shared
Aopenmpi@4 .11 ~atomics~cuda~cxx~cxx_exceptions+gpfs~internal-hwloc~java~leg
Ahwloc@2.6.0! ~cairo~cuda~gl~libudev+libxml2~netloc~nvml~opencl~pci~rocm+:
Alibxml2@2.9.12 ~python
Alibiconv@l. 16! libs=shared,static
Ax2@5.2.5 ~pic libs=shared,static
Apkgconf@1.8.0!
Alibevent@?2.1.12 +openssl
Aopenssh@g . 6p1
Alibedit@3.1-20210216
Aperl@5.34.0 +cpanm+shared+threads
Aberkeley-db@18.1.40 +cxx~docs+stl patches=b231fcc4d5cff@5e5c3a4814f
Abzip2@1.0.8 ~debug~pic+shared
Agdbm@1 . 19
Areadline@g. 1’

With reuse: 16 packages were reusable

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Use ‘spack spec’ to see the results of concretization

$ spack spec mpileaks
Input spec

mpileaks

Concretized
mpileaks@l.0%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Aadept-utils@1.0.1%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Aboost@1.61.0%gcc@5.3.0+atomic+chrono+date_time~debug+filesystem~graph
~icu_support+iostreams+locale+log+math~mpi+multithreaded+program_options
~python+random +regex+serialization+shared+signals+singlethreaded+system
+test+thread+timer+wave arch=darwin-elcapitan-x86_64
Abzip2@1.0.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Az1ib@1.2.8%gcc@®5.3.0 arch=darwin-elcapitan-x86_64
Aopenmpi@2.0.0%gcc@5. 3. 0~mxm~pmi~psm~psm2~slurm~sqlite3~thread_multiple~tm~verbs+vt arch=darwin-elcapitan-x86_64
Ahwloc@1.11.3%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Alibpciaccess@d.13.4%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Alibtool@2.4.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Am4@1.4.17%gcc@5.3.0+sigsegv arch=darwin-elcapitan-x86_64
Alibsigsegv@?.10%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Acallpath@l.0.2%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Adyninst@9.2.0%gcc@5.3.0~stat_dysect arch=darwin-elcapitan-x86_64
Alibdwarf@20160507%gcc@5.3.0 arch=darwin-elcapitan-x86_64
Alibelf@0.8.13%gcc@5.3.0 arch=darwin-elcapitan-x86_64

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 39

Spack environments enable users to build customized stacks
from an abstract description

Simple spack.yaml file

Concretize

N =

spack.yaml file
describes
requirements

Join #tutorial on Slack: slack.spack.io

Install

spack.lock describes
exact versions installed

spack.lock describes exactly what versions/configurations
were installed, allows them to be reproduced.

Can be used to maintain configuration of a software stack.
— Can easily version an environment in a repository

e

Pacakge installations

spack.yaml describes project requirements

spack:
include external configuration
include:
- ../special-config-directory/
- ./config-file.yaml

add package specs to the “specs” list
specs:

- hdf5

- libelf

— openmpi

Concrete spack.lock file (generated)

Materials: spack-tutorial.readthedocs.io

{
"concrete_specs": {

"6s63s02kstp3zyvjezglndmavyé613nul": {

"hdf5": {
"version":
"arch": {

"platform": "darwin",

"platform_os": "mojave",

"target": "x86_64"

"1.10.5",

I
"compiler": {
"name": "clang",
"version": "10.0.0-apple"
I
"namespace":
"paramet !

"bui

We’'ll resume at:
11:30am

Find the slides and associated scripts here:

spack-tutorial.readthedocs.io

Remember to join Spack slack so you can get help!

slack.spack.io
Join the #tutorial channel!

@ Spack

latest

Main Spack Documentation

Basic Installation Tutorial

Configuration Tutorial

Package Creation Tutorial

Developer Workflows Tutorial

& Read the Docs

latest sc18 scl7 sclé
' pearcl9 nsfl9 lanl19 isc19 ecpl9

HTML

E Project Home Builds Downloads

{ View Edit

|

Docs » Tutorial: Sp

Tutorial: S

This is a full-day int
Practice and Experi
2019.

You can use these r
and read the live de

Slides

L Jow

Practice and Experi
Chicago, IL, USA.

Live Demos

We provide scripts
sections in the slide

1. We provide 1
tutorial on y«
the containe

2. When we ho
unfamiliar wi

You should now be

Environments,
spack.yaml and spack.lock

Follow script at spack-tutorial.readthedocs.io

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

http://spack.rtfd.io/

Hands-on Time: Configuration

Follow script at spack-tutorial.readthedocs.io

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

http://spack.rtfd.io/

We’ll resume at:
2:00pm

Find the slides and associated scripts here:

spack-tutorial.readthedocs.io

Remember to join Spack slack so you can get help!

slack.spack.io
Join the #tutorial channel!

@ Spack

latest

Main Spack Documentation

Basic Installation Tutorial

Configuration Tutorial

Package Creation Tutorial

Developer Workflows Tutorial

& Read the Docs

latest sc18 scl7 sclé
' pearcl9 nsfl9 lanl19 isc19 ecpl9

HTML

E Project Home Builds Downloads

{ View Edit

|

Docs » Tutorial: Sp

Tutorial: S

This is a full-day int
Practice and Experi
2019.

You can use these r
and read the live de

Slides

L Jow

Practice and Experi
Chicago, IL, USA.

Live Demos

We provide scripts
sections in the slide

1. We provide 1
tutorial on y«
the containe

2. When we ho
unfamiliar wi

You should now be

Hands-on Time:
Creating Packages

Follow script at spack-tutorial.readthedocs.io

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

http://spack.rtfd.io/

Hands-on Time:
Mirrors and Build Caches

Follow script at spack-tutorial.readthedocs.io

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

http://spack.rtfd.io/

We’'ll resume at:
4:00pm

Find the slides and associated scripts here:

spack-tutorial.readthedocs.io

Remember to join Spack slack so you can get help!

slack.spack.io
Join the #tutorial channel!

@ Spack

latest

Main Spack Documentation

Basic Installation Tutorial

Configuration Tutorial

Package Creation Tutorial

Developer Workflows Tutorial

& Read the Docs

latest sc18 scl7 sclé
' pearcl9 nsfl9 lanl19 isc19 ecpl9

HTML

E Project Home Builds Downloads

{ View Edit

|

Docs » Tutorial: Sp

Tutorial: S

This is a full-day int
Practice and Experi
2019.

You can use these r
and read the live de

Slides

L Jow

Practice and Experi
Chicago, IL, USA.

Live Demos

We provide scripts
sections in the slide

1. We provide 1
tutorial on y«
the containe

2. When we ho
unfamiliar wi

You should now be

Hands-on Time:
Stacks

Follow script at spack-tutorial.readthedocs.io

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

http://spack.rtfd.io/

Hands-on Time:
Developer Workflows

Follow script at spack-tutorial.readthedocs.io

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

http://spack.rtfd.io/

More Features
and the Road Ahead

Join #tutorial on Slack: spackpm.herokuapp.com

Materials: spack-tutorial.readthedocs.io

50

Environments have enabled us to add build many features to

sup

port developer workflows

class Cmake(Package):
executables = ['cmake

@classmethod

def determine_spec_details(cls, prefix, exes_in_prefix):
exe_to_path = dict(
(0s.path.basename(p), p) for p in exes_in_prefix

)
if ‘cmake' not in
return None

cmake = spack.util.executable. Executable(exe_to_path['cmake'])
output = cmake('—-version', output=str)

if output:

match = re.search(r'cmake.xversion\s+(\S+)', output)

if match:

version_str = match.group(1)
return Spec(' cnake@{0} '. format (version_str))

package.py

spack.yaml

spack external find

Automatically find and configure external packages on the system

exe_to_path:

packages:
cmake:
externals:
- spec: cmake@3.15.1
prefix: /usr/local

spack test

spack.yaml configuration Packages know how to run their own test suites

spack ci

Automatically generate parallel build pipelines
(more on this later)

.gitlab-ci.yml Cl
pipeline

spack containerize

Turn environments into container build recipes

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

clasg Libsi 9e):
""TGNU [ibsigsegv is a Library for handling page faults in user mode."""
... spack package contents ...
extra_install_tests - ‘tests/.libs’
def test(self):
data_dir = self test_sulte, current_test data_dir
stoke_test_c = data_dir. JoinC' soke_test.c’)
self.run_test(
‘e, [

1-1%s' % self.prefix.include

Tl%s' % self prefix.lib, '-lsigseqv’,
smoke_test_c,

"-0', 'smoke test'

1
purpose="check linking’)

Self, run_test(
ismoke_test’, [], data_dir.join('smoke_test.out’),
purpose="run built smoke test’)

self.run_test('sigsegvi': ['Test passed’], purpose='check sigsegvl output’)
self.run_test('sigsegv2': ['Test passed’], purpose='check sigsegv2 output’)

package.py

Spack environments are the foundation of Spack Cli

spack ci enables any environment to be
turned into a build pipeline

Pipeline generates a .gitlab-ci.yml file
from spack.lock

Pipelines can be used just to build, or to
generate relocatable binary packages o

es
urls https://cdash.spack. io
: Spack

— Binary packages can be used to keep the same e
build from running twice

Parallel GitLab build pipeline

spack.yaml

Same repository used for spack.yaml can
generate pipelines for project

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 52

We are building a supply chain for HPC

O Spack Contributions :> V/ gitlab.spack.io w xarﬁaiﬁnae’;dié‘iﬁé“

on GitHub
ppc64le, GPU

J pipelines at
> U. Oregon
e =i Pipelines at LLNL

SpaCk C-i- J ! , (Cray PE soon,

hopefully)

¢

spack.yaml
configurations

~7 ci/gitlab/gitlab.spack.io — Pipeline passed on GitLab * On every pull request
@ ' (E4S, SDKSs, others) « On every release branch

GitLab ClI builds (changed) packages

* New security model supports untrusted contributions from forks
— Sandboxed build caches for test builds; Authoritative builds on mainline only after approved merge

This Cl has greatly increased reliability of builds for users

Spack’s model lowers the maintenance burden
of optimized software stacks

Traditional OS
package manager

S e o T8

One software stack

) . Portable (unoptimized) .
Recipe per Build farm x86_64 binaries upgraded over time
package configuration
(need rewrites for new systems)
Graviton2 binaries [I N e B)

software stacks

Optimized : > =9 a3 zlg Built for specific:
Skylake binaries zlg zlg =

® @.@

Parameterized recipe Y CSyste_:ns
per package Build farm / CI o ompilers
Optimized :> = ZIE ZIE 0S’s
Same recipe evolves for all targets
(P gets) GPU binaries ?E = E MPls
etc.
Users/developers can also build directly from source ﬁ

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ >4

We started providing public binaries in June 2022

latest v0.18.x release binaries
spack mirror add https://binaries.spack.io/releases/v0.18

rolling release: bleeding edge binaries
spack mirror add https://binaries.spack.io/develop

* Over 3,000 builds in the cache so far:

— Amazon Linux 2 x86 64 v4
— Amazon Linux 2 aarcho4

— Amazon Linux 2 graviton2

— Ubuntu 18.04 x86_64

» Expect this list to expand!

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 55

Our infrastructure enables us to sustainably manage a binary distro

Public, signed binaries in
Separate, untrusted S3 buckets CloudFront distribution

Per-PR build caches https://binaries.spack.io

~

github/pr-28468]—[github/pr-28469

J

develop]—[releases/v0.18

Contributors submit Maintainers review PRs
package changes + Verify PR build succeeded

« lterate on builds in PR Review package code

» Caches prevent * Merge to develop

unnecessary rebuilds

* Moves bulk of binary maintenance upstream, onto PRs
— Production binaries never reuse binaries from untrusted environment

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Rebuild and Sign

* Published binaries built
ONLY from approved
code

* Protected signing runners
* Ephemeral keys

@56

Spack v0.20 roadmap:

Separate concretization of build dependencies

spack install pkgl %intel

* We want to:
— Build build dependencies with the "easy" compilers
— Build rest of DAG (the link/run dependencies) with the
fancy compiler

» 2 approaches to modify concretization:

1. Separate solves
 Solve run and link dependencies first
» Solve for build dependencies separately
» May restrict possible solutions (build €<-> run env
constraints)
2. Separate models
» Allow a bigger space of packages in the solve O Easy compiler
* Solve all runtime environments together

« May explode (even more) combinatorially Fancy compiler

B: build L:link R:run

Spack 0.20 Roadmap: compilers as dependencies

 We need deeper modeling of compilers to handle
compiler interoperability
Compiler-imposed

- IibStdC++, libc++ Compatlblllty dependency
— Compilers that depend on compilers
- Linking executables with multiple compilers

* First prototype is complete!

- We’ve done successful builds of some packages using
compilers as dependencies

— We need the new concretizer to move forward!

\ 4
« Packages that depend on languages

- Depend on cxx@2011, cxx@2017, fortran@1995, etc

- Depend on openmp@4.5, other compiler features Compilers and runtime libs fully modeled
. as dependencies

- Model languages, openmp, cuda, etc. as virtuals

Spack’s long-term strategy is based around
broad adoption and collaboration (intel.

* Not sustainable without a community) Google Cloud
— Broad adoption incentivizes contributors

— Cloud resources and automation absolutely
necessary

o)

FUJITSU

» Spack preserves build knowledge in a
cross-platform, reusable way

— Minimize rewriting recipes when porting QE Arg%&@"e
« Cl ensures builds continue to work as NVIDIA.
packages evolve
— Keep packages flexible but verify key .

configurations

» Growing contributor base and continuing Sanci
to automate are the most important Natioral
priorities f:b' ” Laboratories

—~ 377 contributors to 0.18 release! wmtd Arm %OAKRIDGE

National Laboratory

When would we go 1.07

*Big things we've wanted for 1.0 are:
— New concretizer
— production CI
— production public build cache
— Compilers as dependencies
— Stable package API
e Enables separate package repository

 After 0.19 we will hopefully have all of these
— Maybe there won’t be a 0.20!

Join the Spack community!

= There are lots of ways to get involved!
— Contribute packages, documentation, or features at github.com/spack/spack
— Contribute your configurations to github.com/spack/spack-configs

= Talk to us!
— You're already on our Slack channel (spackpm.herokuapp.com)
— Join our Google Group (see GitHub repo for info)
— Submit GitHub issues and pull requests!

* Star us on GitHub!
github.com/spack/spack

Follow us on Twitter!
@spackpm

We hope to make distributing & using HPC software easy!

Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io @ 61

