
LLNL-PRES-806064
This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

spack.io

Managing HPC Software Complexity
with Spack

ISC 2022
Hamburg, Germany

May 29, 2022The most recent version of these slides can be found at:
https://spack-tutorial.readthedocs.io

https://spack.readthedocs.io/en/latest/tutorial.html

LLNL-PRES-806064
2Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Find these slides and associated scripts here:

spack-tutorial.rtfd.io

Tutorial Materials

We also have a chat room on Spack slack.
You can join here:

You can ask questions here after the conference is over.
Over 1,700 people can help you on Slack!

slack.spack.io
Join the #tutorial channel!

LLNL-PRES-806064
3Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Tutorial Presenters

Todd Gamblin
LLNL

Greg Becker
LLNL

Michael Kuhn
Otto von Guericke

University Magdeburg

Massimiliano Culpo
np-complete S.r.l.

Harmen Stoppels
CSCS

LLNL-PRES-806064
4Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Intro 9:00 – 9:15
Basics 9:15 – 10:05
Concepts 10:05 – 10:30
Environments 10:30 – 11:00
Break 11:00 – 11:30
Configuration 11:30 – 12:00
Developer Workflows 12:00 – 12:45
Wrap-up 12:45 – 1:00

Agenda (we are doing the first half of our full day tutorial)

Packaging 45 min
Generating Environment Modules 30 min
Mirrors/Binaries 20 min
Stacks 25 min
Scripting 25 min

You can find the additional sessions
from our normal full-day tutorial at
spack-tutorial.readthedocs.io:

For this half-day tutorial:

LLNL-PRES-806064
5Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Modern scientific codes rely on icebergs of dependency libraries

sqlite

readline

zlib

cmake

ncurses

openssl

py-setuptools

python

cub

libjpeg-turbo

nasm

py-pyparsingpy-pillow

libxml2

xz

libiconv

pkgconf

automake

autoconf

perl

py-cycler

py-six

py-protobuf

protobuf

libffi

bzip2

gdbm

expatgettext

texinfo

freetype

libpng py-kiwisolver

py-numexpr

py-numpy

ninja

py-onnx

py-typing py-typing-extensionsopenblas

cnpy

diffutils

m4

libtiff py-pytznccl

cuda

py-cython

libsigsegv

conduit

mpich

hdf5

py-setuptools-scm

findutils

py-matplotlib

py-python-dateutil

py-configparser

libtool

tar

cereal

hydrogen

aluminum

hwloc

py-graphviz

py-pandas

py-bottleneck

cudnn

lbann

py-texttable

opencv

71 packages
188 dependencies

LBANN: Neural Nets for HPC

cmake

ncurses

openssl

diffutils

libiconv

pkgconf

libffi

zlib

hypre

openmpi

openblashdf5

python

sqlite

gettext

gdbm xz

readline

expat

bzip2perl

sundials

libxml2

tar

hwloc

metis

mfem

petsc

superlu-dist

parmetis

MFEM:
Higher-order finite elements

31 packages,
69 dependencies

ncurses

pkgconf

r-colorspace

r

xz

r-pkgconfig r-numderiv

bison

diffutils

help2man

perl

m4

r-stringr

r-magrittrr-stringi r-glue

nasm

r-withr

r-lava

r-squarem

r-survival

r-matrixstats

r-scales

r-viridislite

r-rcolorbrewer

r-munsell

r-r6

r-labeling

r-rcpp

openssl

zlib

r-adabag

r-caret

r-doparallel

r-rpart

r-foreach

libtiff

libjpeg-turbo

r-mclust

python

libffi

readline

sqlitebzip2

gettext

gdbm

expat fontsproto

util-macros

r-strucchange

r-zoo

r-sandwich

r-rlang

r-plotmo

r-plotrix r-formula r-teachingdemos

pcre

r-condop

r-genomeinfodbr-plyr

r-genomicranges

r-rminer

r-earth

r-randomforest

r-s4vectors

r-seqinr

r-iranges

r-recipes

r-modelmetrics

r-nlme

r-reshape2

r-ggplot2

r-lattice

r-xgboost

r-matrix

r-data-table

findutils

libtoolautomake

autoconf

texinfo

r-biocgenerics

r-genomeinfodbdata

r-rcurl

openjdk

r-iterators

berkeley-db

r-nnet

r-backports

r-tidyselect

r-timedater-tidyr

r-dplyr

r-generics

r-purrr

r-tibble

r-lubridate

r-ipred

r-gower

r-segmented

r-mda

r-class

r-crayon

libiconv

libidn2

libunistring

r-kknn

r-igraph

r-prodlim

r-kernsmooth

r-mvtnorm

ninja

tar

r-modeltools

libfontenc

xproto

freetype

libpng

gmake

r-mgcv

r-plogr

r-cubist

r-assertthat

r-bh

r-xvector

r-zlibbioc

r-pls

r-th-data

r-mass

r-ade4

font-util

mkfontscale

bdftopcfmkfontdir

icu4c

libxml2

glpk

gmp

r-lazyeval

r-fansi

r-e1071

r-party

r-glmnet

r-kernlab

r-vctrs

r-zeallotr-ellipsis r-digest

r-codetools

r-coin

r-multcomp r-libcoin

gperf

pixman

pango

harfbuzz

cairo

gobject-introspection

fontconfigglib

r-bitops

sed

flex

r-pillar

r-utf8 r-cli

libsigsegv

curl

cmake

r-gtable

libxfont

tcl

pcre2

libuuidmeson

py-setuptools

xtrans

r-condop:
R Genome Data Analysis Tools

179 packages,
527 dependencies

LLNL-PRES-806064
6Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

ECP’s E4S stack is even larger than these codes

— Red boxes are the packages in it (about 100)
— Blue boxes are what else you need to build it (about 600)
— It’s infeasible to build and integrate all of this manually

LLNL-PRES-806064
7Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ 1:1 relationship between source code and binary (per platform)
— Good for reproducibility (e.g., Debian)
— Bad for performance optimization

§ Binaries should be as portable as possible
— What most distributions do
— Again, bad for performance

§ Toolchain is the same across the ecosystem
— One compiler, one set of runtime libraries
— Or, no compiler (for interpreted languages)

Some fairly common (but questionable) assumptions
made by package managers (conda, pip, apt, etc.)

Outside these boundaries, users are typically on their own

LLNL-PRES-806064
8Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ Code is typically distributed as source
— With exception of vendor libraries, compilers

§ Often build many variants of the same package
— Developers’ builds may be very different
— Many first-time builds when machines are new

§ Code is optimized for the processor and GPU
— Must make effective use of the hardware
— Can make 10-100x perf difference

§ Rely heavily on system packages
— Need to use optimized libraries that come with machines
— Need to use host GPU libraries and network

§ Multi-language
— C, C++, Fortran, Python, others

all in the same ecosystem

High Performance Computing (HPC)
violates many of these assumptions

Oak Ridge National Lab
Power9 / NVIDIA

Summit

Lawrence Berkeley
National Lab

AMD Zen / NVIDIA

NERSC-9Perlmutter

Oak Ridge National Lab
AMD Zen / Radeon

Lawrence Livermore
National Lab

AMD Zen / Radeon

Argonne National Lab
Intel Xeon / Xe

Aurora

Current

Upcoming

Some Supercomputers

RIKEN
Fujitsu/ARM a64fx

Fugaku

LLNL-PRES-806064
9Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ Containers provide a great way to reproduce and distribute an
already-built software stack

§ Someone needs to build the container!
— This isn’t trivial
— Containerized applications still have hundreds of dependencies

§ Using the OS package manager inside a container is insufficient
— Most binaries are built unoptimized
— Generic binaries, not optimized for specific architectures

§ HPC containers may need to be rebuilt to support many
different hosts, anyway.
— Not clear that we can ever build one container for all facilities
— Containers likely won’t solve the N-platforms problem in HPC

What about containers?

We need something more flexible to build the containers

LLNL-PRES-806064
10Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

• Spack automates the build and installation of scientific software

• Packages are parameterized, so that users can easily tweak and tune configuration

• Ease of use of mainstream tools, with flexibility needed for HPC

• In addition to CLI, Spack also:
• Generates (but does not require) modules
• Allows conda/virtualenv-like environments
• Provides many devops features (CI, container generation, more)

$ spack install hdf5@1.10.5
$ spack install hdf5@1.10.5 %clang@6.0
$ spack install hdf5@1.10.5 +threadssafe

$ spack install hdf5@1.10.5 cppflags="-O3 –g3"
$ spack install hdf5@1.10.5 target=haswell
$ spack install hdf5@1.10.5 +mpi ^mpich@3.2

$ git clone https://github.com/spack/spack
$ spack install hdf5

No installation required: clone and go

Simple syntax enables complex installs

github.com/spack/spack

Spack enables Software distribution for HPC

LLNL-PRES-806064
11Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

What’s a package manager?

§ Spack is a package manager
— Does not a replace Cmake/Autotools
— Packages built by Spack can have any

build system they want

§ Spack manages dependencies
— Drives package-level build systems
— Ensures consistent builds

§ Determining magic configure lines
takes time
— Spack is a cache of recipes

• Manages package installation
• Manages dependency relationships
• May drive package-level build systems

Package
Manager

• Cmake, Autotools
• Handle library abstractions
• Generate Makefiles, etc.

High Level
Build

System

• Make, Ninja
• Handles dependencies among
commands in a single build

Low Level
Build

System

LLNL-PRES-806064
12Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

People who want to use or distribute software for HPC!

1. End Users of HPC Software
— Install and run HPC applications and tools

2. HPC Application Teams
— Manage third-party dependency libraries

3. Package Developers
— People who want to package their own software for distribution

4. User support teams at HPC Centers
— People who deploy software for users at large HPC sites

Who can use Spack?

LLNL-PRES-806064
13Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack sustains the HPC software ecosystem
with the help of its many contributors

6,400+ software packages
Over 1,030 contributors

Nearly 6,000 monthly active users
(per documentation site)

Monthly active users
Most package contributions are not from DOE

But they help sustain the DOE ecosystem!

LLNL-PRES-806064
14Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack is used on the fastest supercomputers in the world

Includes:
1. Fugaku at RIKEN (Fujitsu ARM a64fx)
2. Summit at ORNL (Power9/Volta)
3. Sierra at LLNL (Power9/Volta)

LLNL-PRES-806064
15Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ Spack will be used to build software for the three upcoming
U.S. exascale systems

§ ECP has built the Extreme Scale Scientific Software Stack (E4S)
with Spack – more at https://e4s.io

§ Spack will be integral to upcoming ECP testing efforts.

Spack is critical for ECP’s mission to create a
robust, capable exascale software ecosystem.

https://e4s.io

Spack is the most depended-upon
project in ECP

https://e4s.io/

LLNL-PRES-806064
16Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

One month of Spack development is pretty busy!

LLNL-PRES-806064
17Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack’s widespread adoption has drawn
contributions and collaborations with many vendors

§ AWS invests significantly in cloud credits for Spack build farm
— Joint Spack tutorial with AWS had 125+ participants

— Joint AWS/AHUG Spack Hackathon drew 60+ participants

§ AMD has contributed ROCm packages and compiler support
— 55+ PRs mostly from AMD, also others

— ROCm, HIP, aocc packages are all in Spack now

§ HPE/Cray is doing internal CI for Spack packages, in the Cray environment

§ Intel contributing OneApi support and licenses for our build farm

§ NVIDIA contributing NVHPC compiler support and other features

§ Fujitsu and RIKEN have contributed a huge number of packages for

ARM/a64fx support on Fugaku

§ ARM and Linaro members contributing ARM support
— 400+ pull requests for ARM support from various companies

LLNL-PRES-806064
18Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

1. “Functional” Package Managers
— Nix https://nixos.org/
— GNU Guix https://www.gnu.org/s/guix/

2. Build-from-source Package Managers
— Homebrew, LinuxBrew http://brew.sh
— MacPorts https://www.macports.org
— Gentoo https://gentoo.org

Other tools in the HPC Space:

§ Easybuild http://hpcugent.github.io/easybuild/
— An installation tool for HPC
— Focused on HPC system administrators – different package model from Spack
— Relies on a fixed software stack – harder to tweak recipes for experimentation

§ Conda https://conda.io
— Very popular binary package manager for data science
— Not targeted at HPC; generally has unoptimized binaries

Spack is not the only tool that automates builds

https://nixos.org/
https://www.gnu.org/s/guix/
http://brew.sh/
https://www.macports.org/
https://gentoo.org/
http://hpcugent.github.io/easybuild/
https://conda.io/

LLNL-PRES-806064
19Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Hands-on Time: Spack Basics

Follow script at spack-tutorial.readthedocs.io

http://spack.rtfd.io/

LLNL-PRES-806064
20Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Core Spack Concepts

LLNL-PRES-806064
21Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ Traditional binary package managers
— RPM, yum, APT, yast, etc.
— Designed to manage a single stack.
— Install one version of each package in a single prefix (/usr).
— Seamless upgrades to a stable, well tested stack

§ Port systems
— BSD Ports, portage, Macports, Homebrew, Gentoo, etc.
— Minimal support for builds parameterized by compilers, dependency versions.

§ Virtual Machines and Linux Containers (Docker)
— Containers allow users to build environments for different applications.
— Does not solve the build problem (someone has to build the image)
— Performance, security, and upgrade issues prevent widespread HPC deployment.

Most existing tools do not support combinatorial versioning

LLNL-PRES-806064
22Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ Each expression is a spec for a particular configuration
— Each clause adds a constraint to the spec
— Constraints are optional – specify only what you need.
— Customize install on the command line!

§ Spec syntax is recursive
— Full control over the combinatorial build space

Spack provides a spec syntax to describe customized package
configurations

$ spack install mpileaks unconstrained
$ spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
$ spack install mpileaks@3.3 cppflags="-O3 –g3" set compiler flags
$ spack install mpileaks@3.3 target=cascadelake set target microarchitecture
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3 ^ dependency constraints

LLNL-PRES-806064

23Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack packages are parameterized using the spec syntax
Python DSL defines many ways to build

Metadata at the class level

Versions

Install logic
in instance methods

Dependencies
(same spec syntax)

from spack import *

class Kripke(CMakePackage):
"""Kripke is a simple, scalable, 3D Sn deterministic particle transport mini-app."""

homepage = "https://computation.llnl.gov/projects/co-design/kripke"
url = "https://computation.llnl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"

version(‘1.2.3’, sha256='3f7f2eef0d1ba5825780d626741eb0b3f026a096048d7ec4794d2a7dfbe2b8a6’)
version(‘1.2.2’, sha256='eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2efa039a86e0976f3a3’)
version('1.1’, sha256='232d74072fc7b848fa2adc8a1bc839ae8fb5f96d50224186601f55554a25f64a’)

variant('mpi', default=True, description='Build with MPI.’)
variant('openmp', default=True, description='Build with OpenMP enabled.’)

depends_on('mpi', when='+mpi’)
depends_on('cmake@3.0:', type='build’)

def cmake_args(self):
return [

'-DENABLE_OPENMP=%s’ % ('+openmp’ in self.spec),
'-DENABLE_MPI=%s' % ('+mpi’ in self.spec),

]

def install(self, spec, prefix):
mkdirp(prefix.bin)
install('../spack-build/kripke', prefix.bin)

Base package
(CMake support)

Variants (build options)

Don’t typically need install() for

CMakePackage, but we can work

around codes that don’t have it.One package.py file per software project!

LLNL-PRES-806064
24Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

cuda is a variant (build option)

cuda_arch is only present
if cuda is enabled

dependency on cuda, but only
if cuda is enabled

Conditional variants simplify packages

constraints on cuda version

compiler support for x86_64
and ppc64le

CudaPackage: a mix-in for packages that use CUDA

There is a lot of expressive power in the Spack package DSL.

LLNL-PRES-806064
25Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

mpileaks

mpi

callpath dyninst

libdwarf

libelf

§ Spack ensures one configuration of each library per DAG
— Ensures ABI consistency.
— User does not need to know DAG structure; only the dependency names.

§ Spack can ensure that builds use the same compiler, or you can mix
— Working on ensuring ABI compatibility when compilers are mixed.

Spack Specs can constrain versions of dependencies

$ spack install mpileaks %intel@12.1 ^libelf@0.8.12

LLNL-PRES-806064
26Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack handles ABI-incompatible, versioned interfaces like MPI

$ spack install mpileaks ^mvapich@1.9 $ spack install mpileaks ^openmpi@1.4:

$ spack install mpileaks ^mpi@2

mpileaks

mpi

callpath dyninst

libdwarf

libelf

§ mpi is a virtual dependency

§ Install the same package built with two different MPI implementations:

§ Let Spack choose MPI implementation, as long as it provides MPI 2 interface:

LLNL-PRES-806064
27Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Concretization fills in missing configuration details
when the user is not explicit.

mpileaks ^callpath@1.0+debug ^libelf@0.8.11 User input: abstract spec with some constraints

Concrete spec is fully constrained
and can be passed to install.

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

callpath@1.0
%gcc@a4.7.3+debug

=linux-ppc64

dyninst@8.1.2
%gcc@4.7.3
=linux-ppc64

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

Abstract, normalized spec
with some dependencies.

mpileaks

mpi

callpath@1.0
+debug

dyninst

libelf@0.8.11

libdwarf

N
orm

alize

Concretize Store

spec:
- mpileaks:

arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
callpath: bah5f4h4d2n47mgycej2mtrnrivvxy77
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: 33hjjhxi7p6gyzn5ptgyes7sghyprujh
variants: {}
version: '1.0'

- adept-utils:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
boost: teesjv7ehpe5ksspjim5dk43a7qnowlq
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
variants: {}
version: 1.0.1

- boost:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies: {}
hash: teesjv7ehpe5ksspjim5dk43a7qnowlq
variants: {}
version: 1.59.0

...

spec.yaml

Detailed provenance is stored
with the installed package

LLNL-PRES-806064
28Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

opt
!"" spack

#"" darwin-mojave-skylake
$!"" clang-10.0.0-apple
$ #"" bzip2-1.0.8-hc4sm4vuzpm4znmvrfzri4ow2mkphe2e
$ #"" python-3.7.6-daqqpssxb6qbfrztsezkmhus3xoflbsy
$ #"" sqlite-3.30.1-u64v26igxvxyn23hysmklfums6tgjv5r
$ #"" xz-5.2.4-u5eawkvaoc7vonabe6nndkcfwuv233cj
$!"" zlib-1.2.11-x46q4wm46ay4pltriijbgizxjrhbaka6
#"" darwin-mojave-x86_64
$!"" clang-10.0.0-apple
$!"" coreutils-8.29-pl2kcytejqcys5dzecfrtjqxfdssvnob

§ Each unique dependency graph is a
unique configuration.

§ Each configuration in a unique directory.
— Multiple configurations of the same

package can coexist.

§ Hash of entire directed acyclic graph
(DAG) is appended to each prefix.

§ Installed packages automatically find
dependencies
— Spack embeds RPATHs in binaries.
— No need to use modules or set

LD_LIBRARY_PATH
— Things work the way you built them

Hashing allows us to handle combinatorial complexity

mpileaks

mpi

callpath dyninst

libdwarf

libelf

Installation Layout

Dependency DAG

opt
!"" spack

#"" darwin-mojave-skylake
$!"" clang-10.0.0-apple
$ #"" bzip2-1.0.8-hc4sm4vuzpm4znmvrfzri4ow2mkphe2e
$ #"" python-3.7.6-daqqpssxb6qbfrztsezkmhus3xoflbsy
$ #"" sqlite-3.30.1-u64v26igxvxyn23hysmklfums6tgjv5r
$ #"" xz-5.2.4-u5eawkvaoc7vonabe6nndkcfwuv233cj
$!"" zlib-1.2.11-x46q4wm46ay4pltriijbgizxjrhbaka6
#"" darwin-mojave-x86_64
$!"" clang-10.0.0-apple
$!"" coreutils-8.29-pl2kcytejqcys5dzecfrtjqxfdssvnob

Hash

LLNL-PRES-806064
29Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

An isolated compilation environment allows Spack
to easily swap compilers

Spack
Process

Set up environment

CC = spack/env/spack-cc SPACK_CC = /opt/ic-15.1/bin/icc
CXX = spack/env/spack-c++ SPACK_CXX = /opt/ic-15.1/bin/icpc
F77 = spack/env/spack-f77 SPACK_F77 = /opt/ic-15.1/bin/ifort
FC = spack/env/spack-f90 SPACK_FC = /opt/ic-15.1/bin/ifort

PKG_CONFIG_PATH = ... PATH = spack/env:$PATH
CMAKE_PREFIX_PATH = ...
LIBRARY_PATH = ...

do_install()

Install dep1 Install dep2 Install package…

Build
Process

Fork

install() configure make make install

-I /dep1-prefix/include
-L /dep1-prefix/lib
-Wl,-rpath=/dep1-prefix/lib

Compiler wrappers
(spack-cc, spack-c++, spack-f77, spack-f90)

icc icpc ifort

▪ Forked build process isolates environment for each build.
Uses compiler wrappers to:

— Add include, lib, and RPATH flags
— Ensure that dependencies are found automatically
— Load Cray modules (use right compiler/system deps)

LLNL-PRES-806064
30Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

packages:
mpi:

buildable: False
paths:

openmpi@2.0.0 %gcc@4.7.3 arch=linux-rhel6-ppc64:
/path/to/external/gcc/openmpi-2.0.0

openmpi@1.10.3 %gcc@4.7.3 arch=linux-rhel6-ppc64:
/path/to/external/gcc/openmpi-1.10.3

...

mpileaks@2.3
gcc@4.7.3

arch=linux-redhat6-ppc64

callpath@1.0
gcc@4.7.3

arch=linux-redhat6-ppc64
+debug

openmpi@2.0.0
gcc@4.7.3

arch=linux-redhat6-ppc64

dyninst@8.1.2
gcc@4.7.3

arch=linux-redhat6-ppc64

hwloc@1.11.3
gcc@4.7.3

arch=linux-redhat6-ppc64

libpciaccess@0.13.4
gcc@4.7.3

arch=linux-redhat6-ppc64

libtool@2.4.6
gcc@4.7.3

arch=linux-redhat6-ppc64

m4@1.4.17
gcc@4.7.3

arch=linux-redhat6-ppc64

libsigsegv@2.10
gcc@4.7.3

arch=linux-redhat6-ppc64

libelf@0.8.11
gcc@4.7.3

arch=linux-redhat6-ppc64

libdwarf@20130729
gcc@4.7.3

arch=linux-redhat6-ppc64

We can configure Spack to build with external software

mpileaks@2.3
gcc@4.7.3

arch=linux-redhat6-ppc64

callpath@1.0
gcc@4.7.3

arch=linux-redhat6-ppc64
+debug

openmpi@2.0.0
gcc@4.7.3

arch=linux-redhat6-ppc64

dyninst@8.1.2
gcc@4.7.3

arch=linux-redhat6-ppc64

libelf@0.8.11
gcc@4.7.3

arch=linux-redhat6-ppc64

libdwarf@20130729
gcc@4.7.3

arch=linux-redhat6-ppc64

/path/to/external/gcc/openmpi-2.0.0

packages.yaml

Users register external packages in a
configuration file (more on these later). Spack prunes the DAG when adding external packages.

mpileaks ^callpath@1.0+debug
^openmpi ^libelf@0.8.11

LLNL-PRES-806064
31Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Color Key
⬤In review

⬤In llnl.wci.mapp repo

⬤In llnl.wci repo

⬤Quest is part of Axom

⬤Spack Builtin

marbl

blast miranda

overlink

umpire

raja

tribolleilak

exo

selene

quest

leos

opacity

samrai

sundials

silo

conduit

hdf5blt

camp

axom

mfem

irep el4 lupa ascent mpi4py openssl readline

tdf rngphysicsutils

boost

hypre lapack

zlib

nuclear caliper

metis

netcdf

sidretls libunwind

luajit python vtkh

vtkm

devil_ray

apcomp

gotchaadiak

Spack package repositories allow stacks to be layered

llnl.wci.mapp

llnl.wci

builtin

marbl

miranda

leos

boost raja axom

blast

Common internal
packages

MARBL Application Packages

Open Source Spack
packages

$ spack repo create /path/to/my_repo
$ spack repo add my_repo
$ spack repo list
==> 2 package repositories.
my_repo /path/to/my_repo
builtin spack/var/spack/repos/builtin

LLNL MARBL multi-physics
application

LLNL-PRES-806064
32Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack mirrors

§ Spack allows you to define mirrors:
§ Directories in the filesystem
§ On a web server
§ In an S3 bucket

§ Mirrors are archives of fetched tarballs, repositories,
and other resources needed to build
§ Can also contain binary packages

§ By default, Spack maintains a mirror in
var/spack/cache of everything you’ve fetched so far.

§ You can host mirrors internal to your site
§ See the documentation for more details

Spack
users

Local cache

Shared FS

S3 Bucket

Original source
on internet

LLNL-PRES-806064
33Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

The concretizer includes information from
packages, configuration, and CLI

• new versions
• new dependencies
• new constraints

package.py repository

local preferences config
packages.yaml

yaml

local environment config
spack.yaml

yaml

admins,
users

users

Command line constraints
spack install hdf5@1.12.0 +debug

Contributors

default config
packages.yaml

yamlspack
developers

users

concretizer

Concrete spec is
fully constrained
and can be built.

cmake

ncurses

openssl

diffutils

libiconv

pkgconf

libffi

zlib

hypre

openmpi

openblashdf5

python

sqlite

gettext

gdbm xz

readline

expat

bzip2perl

sundials

libxml2

tar

hwloc

metis

mfem

petsc

superlu-dist

parmetis

Dependency solving
is NP-hard

LLNL-PRES-806064
34Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ New concretizer leverages Clingo (see potassco.org)

§ Clingo is an Answer Set Programming (ASP) solver
— ASP looks like Prolog; leverages SAT solvers for speed/correctness
— ASP program has 2 parts:

1. Large list of facts generated from our package repositories and config
2. Small logic program (~800 lines)

– includes constraints and optimization criteria

§ New algorithm on the Spack side is conceptually simpler:
— Generate facts for all possible dependencies, send to logic program
— Optimization criteria express preferences more clearly
— Build a DAG from the results

§ New concretizer solves many specs that old concretizer can’t
— Backtracking is a huge win – many issues resolved
— Conditional logic that was complicated before is now much easier

We use logic programming to simplify package solving

Some facts for the HDF5 package

LLNL-PRES-806064
35Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ Hash matches are very
sensitive to small changes

§ In many cases, a satisfying
cached or already installed
spec can be missed

§ Nix, Spack, Guix, Conan,
and others reuse this way

--fresh only reuses builds if hashes match

mpileaks

mpi

callpath dyninst

libdwarf

libelf

Package
cache

6zvh4ueem6f5yrcfugh67k2hrtxbgbcs

74mwnxgn6nujehpyyalhwizwojwn5zga

4xxvh5ldm7gm32ngtixcm2odaer3cvvb

k2yumgxwq6ijubivfpbjpmrrbzyqcoot

qo2af23r2npatxdtna3fmwkeennywixp

cwx4qwk4bkamf4gjrglmxfu3bhasyt74

1. Resolve metadata

2. Create per-node hashes

3. Query for exact hash match

??

LLNL-PRES-806064
36Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

--reuse (now the default) is more aggressive

• --reuse tells the solver about all the installed packages!
• Add constraints for all installed packages, with their hash as the associated ID:

LLNL-PRES-806064
37Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Telling the solver to minimize builds is surprisingly simple in ASP

1. Allow the solver to choose a hash for any package:

2. Choosing a hash means we impose its constraints:

3. Define a build as something without a hash:

4. Minimize builds!

LLNL-PRES-806064
38Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

With and without --reuse optimization

Pure hash-based reuse: all misses With reuse: 16 packages were reusable

LLNL-PRES-806064
39Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Use `spack spec` to see the results of concretization

$ spack spec mpileaks
Input spec

mpileaks

Concretized

mpileaks@1.0%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^adept-utils@1.0.1%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^boost@1.61.0%gcc@5.3.0+atomic+chrono+date_time~debug+filesystem~graph
~icu_support+iostreams+locale+log+math~mpi+multithreaded+program_options
~python+random +regex+serialization+shared+signals+singlethreaded+system
+test+thread+timer+wave arch=darwin-elcapitan-x86_64

^bzip2@1.0.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^zlib@1.2.8%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^openmpi@2.0.0%gcc@5.3.0~mxm~pmi~psm~psm2~slurm~sqlite3~thread_multiple~tm~verbs+vt arch=darwin-elcapitan-x86_64
^hwloc@1.11.3%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^libpciaccess@0.13.4%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^libtool@2.4.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^m4@1.4.17%gcc@5.3.0+sigsegv arch=darwin-elcapitan-x86_64
^libsigsegv@2.10%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^callpath@1.0.2%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^dyninst@9.2.0%gcc@5.3.0~stat_dysect arch=darwin-elcapitan-x86_64

^libdwarf@20160507%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^libelf@0.8.13%gcc@5.3.0 arch=darwin-elcapitan-x86_64

LLNL-PRES-806064
40Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ spack.yaml describes project requirements

§ spack.lock describes exactly what versions/configurations
were installed, allows them to be reproduced.

§ Can be used to maintain configuration of a software stack.
— Can easily version an environment in a repository

Spack environments enable users to build customized stacks
from an abstract description

Simple spack.yaml file

spack.yaml file
describes

requirements

spack.lock describes
exact versions installed

Pacakge installations

Concrete spack.lock file (generated)

Concretize Install

LLNL-PRES-806064
41Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Environments have enabled us to add build many features to
support developer workflows

Automatically find and configure external packages on the system

spack.yaml configurationpackage.py

spack external find

spack containerize
Turn environments into container build recipes

spack.yaml

.gitlab-ci.yml CI
pipeline

Automatically generate parallel build pipelines
(more on this later)

spack ci

class Libsigsegv(AutotoolsPackage, GNUMirrorPackage):
"""GNU libsigsegv is a library for handling page faults in user mode."""

... spack package contents ...

extra_install_tests = ‘tests/.libs’

def test(self):
data_dir = self.test_suite.current_test_data_dir
smoke_test_c = data_dir.join(‘smoke_test.c’)

self.run_test(
'cc’, [

'-I%s' % self.prefix.include,
'-L%s' % self.prefix.lib, '-lsigsegv’,
smoke_test_c,
'-o', 'smoke_test'

]
purpose='check linking’)

self.run_test(
‘smoke_test’, [], data_dir.join('smoke_test.out’),
purpose=‘run built smoke test’)

self.run_test('sigsegv1': ['Test passed’], purpose='check sigsegv1 output’)
self.run_test('sigsegv2': ['Test passed’], purpose='check sigsegv2 output’)

spack test
Packages know how to run their own test suites

package.py

LLNL-PRES-806064
42Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ spack ci enables any environment to be
turned into a build pipeline

§ Pipeline generates a .gitlab-ci.yml file
from spack.lock

§ Pipelines can be used just to build, or to
generate relocatable binary packages
— Binary packages can be used to keep the same

build from running twice

§ Same repository used for spack.yaml can
generate pipelines for project

Spack environments are the foundation of Spack CI

spack.yaml
Parallel GitLab build pipeline

LLNL-PRES-806064
43Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

We are building a supply chain for HPC

spack ci

Spack Contributions
on GitHub

spack.yaml
configurations

(E4S, SDKs, others)

gitlab.spack.io

GitLab CI builds (changed) packages
• On every pull request
• On every release branch

• New security model supports untrusted contributions from forks
– Sandboxed build caches for test builds; Authoritative builds on mainline only after approved merge

x86_64 and aarch64
pipelines in AWS

ppc64le, GPU
pipelines at
U. Oregon

Pipelines at LLNL
(Cray PE soon,

hopefully)

This CI has greatly increased reliability of builds for users

LLNL-PRES-806064
44Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack’s model lowers the maintenance burden
of optimized software stacks

Traditional OS
package manager

Recipe per
package configuration

(need rewrites for new systems)

Portable (unoptimized)
x86_64 binaries

One software stack
upgraded over timeBuild farm

Parameterized recipe
per package

(Same recipe evolves for all targets)
Build farm / CI

Optimized
Graviton2 binaries

Optimized
Skylake binaries

Optimized
GPU binaries

Many
software stacks

Built for specific:
Systems

Compilers
OS’s
MPIs
etc.

Spack

Users/developers can also build directly from source

LLNL-PRES-806064
45Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Environments,
spack.yaml and spack.lock

Follow script at spack-tutorial.readthedocs.io

http://spack.rtfd.io/

Find the slides and associated scripts here:

spack-tutorial.readthedocs.io

We’ll resume at:
11:30pm CET

Remember to join Spack slack so you can get help after ISC!

slack.spack.io
Join the #tutorial channel!

LLNL-PRES-806064
47Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Hands-on Time: Configuration

Follow script at spack-tutorial.readthedocs.io

http://spack.rtfd.io/

LLNL-PRES-806064
48Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Hands-on Time:
Developer Workflows

Follow script at spack-tutorial.readthedocs.io

http://spack.rtfd.io/

LLNL-PRES-806064
49Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

More Features
and the Road Ahead

50

• Major new features:
1. --reuse enabled by default

• Reuse installed packages and build caches
• Use spack install --fresh to get the old behavior

2. Finer-grained spec hash + provenance
3. Better error messages
4. Unify when possible in environments
5. Cray manifest support
6. Windows support
7. New binary format + hardened package signing
8. Bootstrap mirror generation (for air gaps)
9. Makefile generation
10. Conditional variant values and sticky variants

Spack v0.18.0 was just released!

github.com/spack/spack

51

• Coarse DAG hash prior to v0.18:
– Hash included nodes and metadata about their link and run dependencies
– Information about build dependencies was not stored (to avoid rapidly changing hashes)
– Hash would not change if one of your package.py files was updated

• Full DAG hash in v0.18:
– Includes metadata about build, link, and run dependencies (all dependencies)
– Database stores build dependencies (better provenance)
– Hash includes a canonical hash of the package,py recipe

• Some important points:
– Hashes of alread-installed specs and buildcaches will not change
– Churn is minimized by enabling --reuse by default (no issues with hash misses)

• Won’t rebuild every time there is a new cmake version, unless you ask for it with --fresh
– You can now have graphs now with multiple versions of the same build dependency

Spack v0.18 uses a different hash to identify builds

52

•May 2022 Cray PE will ship with Spack-friendly package descriptions

• You can find installed packages and register them as externals with:

• This will register packages from the PE with Spack
– Adds to database and packages.yaml
– Use spack install --reuse to build with found packages.

• Should result in much less configuration required to use the Cray PE

Spack can now find Cray PE manifests

spack external read-cray-manifest

53

• Spack environments have traditionally concretized two ways:
– together: can only have one version of every dependency
– separately: each package in the environment can have its own

• unify:when_possible feature is a best-effort middle ground:
– Dependencies that can be consolidated (e.g. to an old/middle version) will be
– Dependencies that conflict will be built separately
– RPATH will continue to help keep things sane

• Solver work to do this was quite complex
– Using multi-shot solving

• Solve for runtime dependencies first
• Then solve for build dependencies

– Not fully optimal, but very fast
• Approach brought E4S environment concretization from 2 hrs to ~1 minutes

Unifiying when possible in environments

concretizer:
unify: when_possible

54

• Until now, we’ve only supported Linux and macs

• Initial Windows support is in
– Lots of core work to get to this point
– Still a long way to go for all features

• 14 package files ported to Windows initially
– Need more – hoping the community will help!

• Kitware and TechX did main development of this feature

• Hoping this gets us more exposure in other
communities

Spack on Windows is here!

55

Future CI directions focus on scalability and testing

• Scaling tests up to handle every PR has been very difficult
– Driven by GitLab
– Using Kubernetes builders
– Using a cluster at U. Oregon

• Concretization of large environments was slowing turnaround
– 55 min to concretize E4S environment (each spec separately)
– Brought this down to 2.5 min with parallelization and caching
– when_possible will help even more, as it reduces this to one solve

• Amazon and E4S/UO team helping to pinpoint errors

• We are now doing about 100,000 builds/month

• Once we have a stable, rolling release of spack develop branch, we’ll
make the build cache public
– Rolling binaries for develop
– Long-lived snapshots for each release https://stats.e4s.io

56

Spack v0.19 roadmap:
Separate concretization of build dependencies
• We want to:

– Build build dependencies with the "easy" compilers
– Build rest of DAG (the link/run dependencies) with the

fancy compiler

• 2 approaches to modify concretization:
1. Separate solves

• Solve run and link dependencies first
• Solve for build dependencies separately
• May restrict possible solutions (build ßà run env

constraints)
2. Separate models

• Allow a bigger space of packages in the solve
• Solve all runtime environments together
• May explode (even more) combinatorially

1

2 5

3 4

B

B

76

L

8

R

BL

B: build L: link R: run

spack install pkg1 %intel

Easy compiler

Fancy compiler

1

2 5

3 4

B

B

76

L

8

R

BL

L
B

R

57

• We need deeper modeling of compilers to handle
compiler interoperability
– libstdc++, libc++ compatibility
– Compilers that depend on compilers
– Linking executables with multiple compilers

• First prototype is complete!
– We’ve done successful builds of some packages using

compilers as dependencies
– We need the new concretizer to move forward!

• Packages that depend on languages
– Depend on cxx@2011, cxx@2017, fortran@1995, etc
– Depend on openmp@4.5, other compiler features
– Model languages, openmp, cuda, etc. as virtuals

Spack 0.19 Roadmap: compilers as dependencies

1

intel@17

gcc@xxx

B

R

2

intel@16

B

gcc@4.9.3

R

L

Compiler-imposed
dependency

libstdc++

L
L

Compilers and runtime libs fully modeled
as dependencies

58

Spack’s long-term strategy is based around
broad adoption and collaboration

• Not sustainable without a community
– Broad adoption incentivizes contributors
– Cloud resources and automation absolutely necessary

• Spack preserves build knowledge in a
cross-platform, reusable way
– Minimize rewriting recipes when porting

• CI ensures builds continue to work as packages
evolve
– Keep packages flexible but verify key configurations

• Growing contributor base and continuing to
automate are the most important priorities
– 377 contributors to 0.18 release!

Spack
Community

LLNL-PRES-806064
59Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ We need deeper modeling of compilers to handle
compiler interoperability
— libstdc++, libc++ compatibility
— Compilers that depend on compilers
— Linking executables with multiple compilers

§ First prototype is complete!
— We’ve done successful builds of some packages using

compilers as dependencies
— We need the new concretizer to move forward!

§ Packages that depend on languages
— Depend on cxx@2011, cxx@2017, fortran@1995, etc
— Depend on openmp@4.5, other compiler features
— Model languages, openmp, cuda, etc. as virtuals

Spack 0.19 Roadmap: compilers as dependencies

1

intel@17

gcc@xxx

B

R

2

intel@16

B

gcc@4.9.3

R

L

Already-installed dep

Compiler-imposed dep

libstdc++

L
L

Compilers and runtime libs fully modeled
as dependencies

60

Separate concretization of build dependencies

• We want to:
– Build build dependencies with the "easy" compilers
– Build rest of DAG (the link/run dependencies) with the

fancy compiler

• This required significant concretizer modifications

• Gets into issues like bootstrapping

1

2 5

3 4

B

B

76

L

8

R

BL

B: build L: link R: run

spack install pkg1 %intel

Easy compiler

Fancy compiler

1

2 5

3 4

B

B

76

L

8

R

BL

B

R

61

•Big things we’ve wanted for 1.0 are:
– New concretizer
– production CI
– production public build cache
– Compilers as dependencies
– Stable package API
•Enables separate package repository

•After 0.19 we will hopefully have all of these
–Maybe there won’t be a 0.20!

When would we go 1.0?

62

Human-generated constraints

Ongoing research:

BUILD is a 3-year research project, started at LLNL in 2020

• Basic premise: humans can’t generate all the

compatibility constraints

– Version ranges, conflicts, in Spack packages not precise

– rely on maintainers to get right.

• BUILD aims to understand software compatibility at the

binary level

– Develop ABI compatibility models

– Enable automatic and ABI-compatible reuse of system

binaries, foreign binary packages

• WIP: better dependency solvers can enable users to
solve around system dependencies
– find “closest” match to a prior build, using new packages

– Reproduce a prior build with new requirements

mpileaks
version=v1

mpi
version=v2

callpath
version=v3

dyninst
version=v4

libelf
version=v5

libdwarf
version=v6

Resolved

ABI-compatible

Graph

Solver

B version v2, defines t2

f(t1) g(t1, t2)

h(t3) i(t1, t3)

Compatibility Models

63

▪ An active-learning-based
approach for identifying high-
fidelity package build
configurations

▪ Iterative sampling method using
only a limited set of samples.
—Suitable when the true objective

function evaluations are expensive

▪ Surrogate model is used to
compute the value of the
objective for a configuration

Reliabuild: An Active Learning based Configuration
Selection Framework*

*Reliabuild: Searching for High-Fidelity Builds Using Active Learning; H.Menon, K. Parasyris, T. Scogland, T. Gamblin; MSR'2022

Bootstr
ap

Sample
s

Objectiv
e

Functio
n

New
configurati

on

Add
sample

Update
Model Generat

e

Evaluati
on

Surrog
ate

Model

Reliabuild iterates between fitting model and using
it to select samples

64

Reliabuild has significantly higher precision than Random
selection

65

▪ A particular choice of version for packages can significantly affect the build outcome
▪ Importance metric: We use Jensen-Shannon (JS) divergence to compute the difference

between the good and bad distribution.
▪ Some packages impact the build outcome more than others

Package Importance Analysis

Relative ranking of dependencies based on importance can guide the exploration process

66

Pairwise Version Constraints Analysis

LLNL-PRES-806064
67Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ There are lots of ways to get involved!
— Contribute packages, documentation, or features at github.com/spack/spack
— Contribute your configurations to github.com/spack/spack-configs

§ Talk to us!
— You’re already on our Slack channel (spackpm.herokuapp.com)
— Join our Google Group (see GitHub repo for info)
— Submit GitHub issues and pull requests!

Join the Spack community!

@spackpm

We hope to make distributing & using HPC software easy!

github.com/spack/spack
Star us on GitHub! Follow us on Twitter!

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

LLNL-PRES-806064
69Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Hands-on Time: Creating Packages

Follow script at spack-tutorial.readthedocs.io

http://spack.rtfd.io/

LLNL-PRES-806064
70Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Hands-on Time:
Binary Caches and Mirrors

Follow script at spack-tutorial.readthedocs.io

http://spack.rtfd.io/

LLNL-PRES-806064
71Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Hands-on Time:
Stacks

Follow script at spack-tutorial.readthedocs.io

http://spack.rtfd.io/

LLNL-PRES-806064
72Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Hands-on Time:
Scripting

Follow script at spack-tutorial.readthedocs.io

http://spack.rtfd.io/

