
LLNL-PRES-806064
This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

spack.io

Managing HPC Software Complexity
with Spack

ISC 2021 Half-day Tutorial
June 24, 2021The most recent version of these slides can be found at:

https://spack-tutorial.readthedocs.io

https://spack.readthedocs.io/en/latest/tutorial.html

LLNL-PRES-806064
2Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Find these slides and associated scripts here:

spack-tutorial.readthedocs.io

Tutorial Materials

We will also have a chat room on Spack slack.
Get an invite here:

We will give you login credentials for the hands-on exercises
once you join Slack.

slack.spack.io
Join the “tutorial” channel!

LLNL-PRES-806064
3Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Tutorial Presenters

Todd Gamblin Greg Becker Tamara
Dahlgren

Massimiliano
Culpo

Michael Kuhn

LLNL-PRES-806064
4Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Modern scientific codes rely on icebergs of dependency libraries

sqlite

readline

zlib

cmake

ncurses

openssl

py-setuptools

python

cub

libjpeg-turbo

nasm

py-pyparsingpy-pillow

libxml2

xz

libiconv

pkgconf

automake

autoconf

perl

py-cycler

py-six

py-protobuf

protobuf

libffi

bzip2

gdbm

expatgettext

texinfo

freetype

libpng py-kiwisolver

py-numexpr

py-numpy

ninja

py-onnx

py-typing py-typing-extensionsopenblas

cnpy

diffutils

m4

libtiff py-pytznccl

cuda

py-cython

libsigsegv

conduit

mpich

hdf5

py-setuptools-scm

findutils

py-matplotlib

py-python-dateutil

py-configparser

libtool

tar

cereal

hydrogen

aluminum

hwloc

py-graphviz

py-pandas

py-bottleneck

cudnn

lbann

py-texttable

opencv

71 packages
188 dependency links

LBANN: Neural Nets for HPC

cmake

ncurses

openssl

diffutils

libiconv

pkgconf

libffi

zlib

hypre

openmpi

openblashdf5

python

sqlite

gettext

gdbm xz

readline

expat

bzip2perl

sundials

libxml2

tar

hwloc

metis

mfem

petsc

superlu-dist

parmetis

MFEM:
Higher-order finite elements

31 packages,
69 dependency links

ncurses

pkgconf

r-colorspace

r

xz

r-pkgconfig r-numderiv

bison

diffutils

help2man

perl

m4

r-stringr

r-magrittrr-stringi r-glue

nasm

r-withr

r-lava

r-squarem

r-survival

r-matrixstats

r-scales

r-viridislite

r-rcolorbrewer

r-munsell

r-r6

r-labeling

r-rcpp

openssl

zlib

r-adabag

r-caret

r-doparallel

r-rpart

r-foreach

libtiff

libjpeg-turbo

r-mclust

python

libffi

readline

sqlitebzip2

gettext

gdbm

expat fontsproto

util-macros

r-strucchange

r-zoo

r-sandwich

r-rlang

r-plotmo

r-plotrix r-formula r-teachingdemos

pcre

r-condop

r-genomeinfodbr-plyr

r-genomicranges

r-rminer

r-earth

r-randomforest

r-s4vectors

r-seqinr

r-iranges

r-recipes

r-modelmetrics

r-nlme

r-reshape2

r-ggplot2

r-lattice

r-xgboost

r-matrix

r-data-table

findutils

libtoolautomake

autoconf

texinfo

r-biocgenerics

r-genomeinfodbdata

r-rcurl

openjdk

r-iterators

berkeley-db

r-nnet

r-backports

r-tidyselect

r-timedater-tidyr

r-dplyr

r-generics

r-purrr

r-tibble

r-lubridate

r-ipred

r-gower

r-segmented

r-mda

r-class

r-crayon

libiconv

libidn2

libunistring

r-kknn

r-igraph

r-prodlim

r-kernsmooth

r-mvtnorm

ninja

tar

r-modeltools

libfontenc

xproto

freetype

libpng

gmake

r-mgcv

r-plogr

r-cubist

r-assertthat

r-bh

r-xvector

r-zlibbioc

r-pls

r-th-data

r-mass

r-ade4

font-util

mkfontscale

bdftopcfmkfontdir

icu4c

libxml2

glpk

gmp

r-lazyeval

r-fansi

r-e1071

r-party

r-glmnet

r-kernlab

r-vctrs

r-zeallotr-ellipsis r-digest

r-codetools

r-coin

r-multcomp r-libcoin

gperf

pixman

pango

harfbuzz

cairo

gobject-introspection

fontconfigglib

r-bitops

sed

flex

r-pillar

r-utf8 r-cli

libsigsegv

curl

cmake

r-gtable

libxfont

tcl

pcre2

libuuidmeson

py-setuptools

xtrans

r-condop:
R Genome Data Analysis Tools

179 packages,
527 dependency links

LLNL-PRES-806064
5Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ 1:1 relationship between source code and binary (per platform)
— Good for reproducibility (e.g., Debian)
— Bad for performance optimization

§ Binaries should be as portable as possible
— What most distributions do
— Again, bad for performance

§ Toolchain is the same across the ecosystem
— One compiler, one set of runtime libraries
— Or, no compiler (for interpreted languages)

Some fairly common (but questionable) assumptions
made by package managers (conda, pip, apt, etc.)

Outside these boundaries, users are typically on their own

LLNL-PRES-806064
6Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ Code is typically distributed as source
— With exception of vendor libraries, compilers

§ Often build many variants of the same package
— Developers’ builds may be very different
— Many first-time builds when machines are new

§ Code is optimized for the processor and GPU
— Must make effective use of the hardware
— Can make 10-100x perf difference

§ Rely heavily on system packages
— Need to use optimized libraries that come with machines
— Need to use host GPU libraries and network

§ Multi-language
— C, C++, Fortran, Python, others

all in the same ecosystem

High Performance Computing (HPC)
violates many of these assumptions

Oak Ridge National Lab
Power9 / NVIDIA

Summit

Lawrence Berkeley
National Lab

AMD Zen / NVIDIA

NERSC-9Perlmutter

Oak Ridge National Lab
AMD Zen / Radeon

Lawrence Livermore
National Lab

AMD Zen / Radeon

Argonne National Lab
Intel Xeon / Xe

Aurora

Current

Upcoming

Some Supercomputers

RIKEN
Fujitsu/ARM a64fx

Fugaku

LLNL-PRES-806064
7Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ Containers provide a great way to reproduce and distribute an
already-built software stack

§ Someone needs to build the container!
— This isn’t trivial
— Containerized applications still have hundreds of dependencies

§ Using the OS package manager inside a container is insufficient
— Most binaries are built unoptimized
— Generic binaries, not optimized for specific architectures

§ HPC containers may need to be rebuilt to support many
different hosts, anyway.
— Not clear that we can ever build one container for all facilities
— Containers likely won’t solve the N-platforms problem in HPC

What about containers?

We need something more flexible to build the containers

LLNL-PRES-806064
8Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

• Spack automates the build and installation of scientific software

• Packages are parameterized, so that users can easily tweak and tune configuration

• Ease of use of mainstream tools, with flexibility needed for HPC

• In addition to CLI, Spack also:
• Generates (but does not require) modules
• Allows conda/virtualenv-like environments
• Provides many devops features (CI, container generation, more)

$ spack install hdf5@1.10.5
$ spack install hdf5@1.10.5 %clang@6.0
$ spack install hdf5@1.10.5 +threadssafe

$ spack install hdf5@1.10.5 cppflags="-O3 –g3"
$ spack install hdf5@1.10.5 target=haswell
$ spack install hdf5@1.10.5 +mpi ^mpich@3.2

$ git clone https://github.com/spack/spack
$ spack install hdf5

No installation required: clone and go

Simple syntax enables complex installs

github.com/spack/spack

Spack enables Software distribution for HPC

LLNL-PRES-806064
9Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

People who want to use or distribute software for HPC!

1. End Users of HPC Software
— Install and run HPC applications and tools

2. HPC Application Teams
— Manage third-party dependency libraries

3. Package Developers
— People who want to package their own software for distribution

4. User support teams at HPC Centers
— People who deploy software for users at large HPC sites

Who can use Spack?

LLNL-PRES-806064
10Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

The Spack community continues to grow! 5,600+ software packages
820+ contributors

Package contribution rate
increased in 2020

All time high of 3,700
monthly active users this March

Monthly active users

LLNL-PRES-806064
11Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack has been gaining adoption rapidly (if stars are an indicator)

Star Spack at github.com/spack/spack if you like the tutorial!

LLNL-PRES-806064
12Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

Spack is used on the fastest supercomputers in the world

Includes the current top 3:
1. Fugaku at RIKEN (Fujitsu ARM a64fx)
2. Summit at ORNL (Power9/Volta)
3. Sierra at LLNL (Power9/Volta)

LLNL-PRES-806064
13Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ Spack will be used to build software for the US’s three
upcoming exascale systems

§ ECP has built the Extreme Scale Scientific Software Stack (E4S)
with Spack – more at https://e4s.io

§ We are helping ECP fulfill its mission – to create a robust and
capable exascale software ecosystem

Spack is the deployment tool for the U.S. Exascale Computing
Project

https://e4s.io

https://e4s.io/

LLNL-PRES-806064
14Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

One month of Spack development is pretty busy!

LLNL-PRES-806064
15Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

We have seen an increase in industry contributions to Spack

§ Fujitsu and RIKEN have contributed a huge number of packages for
ARM/a64fx support on Fugaku

§ AMD has contributed ROCm packages and compiler support
— 55+ PRs mostly from AMD, also others
— ROCm, HIP, aocc packages are all in Spack now

§ Intel contributing oneapi support and compiler licenses for our build
farm

§ NVIDIA contributing NVHPC compiler support and other features

§ ARM and Linaro members contributing ARM support
— 400+ pull requests for ARM support from various companies

§ AWS is collaborating with us on our build farm, making optimized
binaries for ParallelCluster
— Joint Spack tutorial in July with AWS had 125+ participants

LLNL-PRES-806064
16Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ First widely distributed Spack Survey
— Sent to all of Slack (900+ users)
— All of Spack mailing list, ECP mailing list

§ Got 169 responses!

§ Takeaways:
— People like Spack and its community!
— Docs and package stability need the

most work
— Concretizer features and dev features are

the most wanted improvements

Spack User Survey 2020

Results writeup and full survey data at:

https://spack.io/spack-user-survey-2020

LLNL-PRES-806064
17Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

1. “Functional” Package Managers
— Nix https://nixos.org/
— GNU Guix https://www.gnu.org/s/guix/

2. Build-from-source Package Managers
— Homebrew, LinuxBrew http://brew.sh
— MacPorts https://www.macports.org
— Gentoo https://gentoo.org

Other tools in the HPC Space:

§ Easybuild http://hpcugent.github.io/easybuild/
— An installation tool for HPC
— Focused on HPC system administrators – different package model from Spack
— Relies on a fixed software stack – harder to tweak recipes for experimentation

§ Conda https://conda.io
— Very popular binary package manager for data science
— Not targeted at HPC; generally has unoptimized binaries

Spack is not the only tool that automates builds

https://nixos.org/
https://www.gnu.org/s/guix/
http://brew.sh/
https://www.macports.org/
https://gentoo.org/
http://hpcugent.github.io/easybuild/
https://conda.io/

LLNL-PRES-806064
18Join #tutorial on Slack: slack.spack.io Materials: spack-tutorial.readthedocs.io

§ Part 1
1. Intro Slides
2. Basic Spack Usage Hands-on
3. Core Spack concepts Slides
4. Environments Hands-on

Break

§ Part 2
1. Configuration Hands-on
2. Developer Workflows Hands-on (new!)
3. Binary Caches and Mirrors Hands-on (new!)
4. Future directions and roadmap Slides

Agenda

LLNL-PRES-806064
19Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

Hands-on Time: Spack Basics

Follow script at spack-tutorial.readthedocs.io

http://spack.rtfd.io/

LLNL-PRES-806064
20Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

Core Spack Concepts

We will be resuming at 9am PT / 12 ET

If you have not yet joined us on slack,
get an invite here, join the tutorial channel,
and ask for a VM login! Follow along with the tutorial here

LLNL-PRES-806064
21Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

§ Traditional binary package managers
— RPM, yum, APT, yast, etc.
— Designed to manage a single stack.
— Install one version of each package in a single prefix (/usr).
— Seamless upgrades to a stable, well tested stack

§ Port systems
— BSD Ports, portage, Macports, Homebrew, Gentoo, etc.
— Minimal support for builds parameterized by compilers, dependency versions.

§ Virtual Machines and Linux Containers (Docker)
— Containers allow users to build environments for different applications.
— Does not solve the build problem (someone has to build the image)
— Performance, security, and upgrade issues prevent widespread HPC deployment.

Most existing tools do not support combinatorial versioning

LLNL-PRES-806064
22Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

opt
!"" spack

#"" darwin-mojave-skylake
$!"" clang-10.0.0-apple
$ #"" bzip2-1.0.8-hc4sm4vuzpm4znmvrfzri4ow2mkphe2e
$ #"" python-3.7.6-daqqpssxb6qbfrztsezkmhus3xoflbsy
$ #"" sqlite-3.30.1-u64v26igxvxyn23hysmklfums6tgjv5r
$ #"" xz-5.2.4-u5eawkvaoc7vonabe6nndkcfwuv233cj
$!"" zlib-1.2.11-x46q4wm46ay4pltriijbgizxjrhbaka6
#"" darwin-mojave-x86_64
$!"" clang-10.0.0-apple
$!"" coreutils-8.29-pl2kcytejqcys5dzecfrtjqxfdssvnob

§ Each unique dependency graph is a
unique configuration.

§ Each configuration in a unique directory.
— Multiple configurations of the same

package can coexist.

§ Hash of entire directed acyclic graph
(DAG) is appended to each prefix.

§ Installed packages automatically find
dependencies
— Spack embeds RPATHs in binaries.
— No need to use modules or set

LD_LIBRARY_PATH
— Things work the way you built them

Spack handles combinatorial software complexity

mpileaks

mpi

callpath dyninst

libdwarf

libelf

Installation Layout

Dependency DAG

opt
!"" spack

#"" darwin-mojave-skylake
$!"" clang-10.0.0-apple
$ #"" bzip2-1.0.8-hc4sm4vuzpm4znmvrfzri4ow2mkphe2e
$ #"" python-3.7.6-daqqpssxb6qbfrztsezkmhus3xoflbsy
$ #"" sqlite-3.30.1-u64v26igxvxyn23hysmklfums6tgjv5r
$ #"" xz-5.2.4-u5eawkvaoc7vonabe6nndkcfwuv233cj
$!"" zlib-1.2.11-x46q4wm46ay4pltriijbgizxjrhbaka6
#"" darwin-mojave-x86_64
$!"" clang-10.0.0-apple
$!"" coreutils-8.29-pl2kcytejqcys5dzecfrtjqxfdssvnob

Hash

LLNL-PRES-806064
23Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

mpileaks

mpi

callpath dyninst

libdwarf

libelf

§ Spack ensures one configuration of each library per DAG
— Ensures ABI consistency.
— User does not need to know DAG structure; only the dependency names.

§ Spack can ensure that builds use the same compiler, or you can mix
— Working on ensuring ABI compatibility when compilers are mixed.

Spack Specs can constrain versions of dependencies

$ spack install mpileaks %intel@12.1 ^libelf@0.8.12

LLNL-PRES-806064
24Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

Spack handles ABI-incompatible, versioned interfaces like MPI

$ spack install mpileaks ^mvapich@1.9 $ spack install mpileaks ^openmpi@1.4:

$ spack install mpileaks ^mpi@2

mpileaks

mpi

callpath dyninst

libdwarf

libelf

§ mpi is a virtual dependency

§ Install the same package built with two different MPI implementations:

§ Let Spack choose MPI implementation, as long as it provides MPI 2 interface:

LLNL-PRES-806064
25Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

Concretization fills in missing configuration details
when the user is not explicit.

mpileaks ^callpath@1.0+debug ^libelf@0.8.11 User input: abstract spec with some constraints

Concrete spec is fully constrained
and can be passed to install.

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

callpath@1.0
%gcc@a4.7.3+debug

=linux-ppc64

dyninst@8.1.2
%gcc@4.7.3
=linux-ppc64

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

Abstract, normalized spec
with some dependencies.

mpileaks

mpi

callpath@1.0
+debug

dyninst

libelf@0.8.11

libdwarf

N
orm

alize

Concretize Store

spec:
- mpileaks:

arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
callpath: bah5f4h4d2n47mgycej2mtrnrivvxy77
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: 33hjjhxi7p6gyzn5ptgyes7sghyprujh
variants: {}
version: '1.0'

- adept-utils:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
boost: teesjv7ehpe5ksspjim5dk43a7qnowlq
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
variants: {}
version: 1.0.1

- boost:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies: {}
hash: teesjv7ehpe5ksspjim5dk43a7qnowlq
variants: {}
version: 1.59.0

...

spec.yaml

Detailed provenance is stored
with the installed package

LLNL-PRES-806064
26Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

Use `spack spec` to see the results of concretization

$ spack spec mpileaks
Input spec

mpileaks

Concretized

mpileaks@1.0%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^adept-utils@1.0.1%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^boost@1.61.0%gcc@5.3.0+atomic+chrono+date_time~debug+filesystem~graph
~icu_support+iostreams+locale+log+math~mpi+multithreaded+program_options
~python+random +regex+serialization+shared+signals+singlethreaded+system
+test+thread+timer+wave arch=darwin-elcapitan-x86_64

^bzip2@1.0.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^zlib@1.2.8%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^openmpi@2.0.0%gcc@5.3.0~mxm~pmi~psm~psm2~slurm~sqlite3~thread_multiple~tm~verbs+vt arch=darwin-elcapitan-x86_64
^hwloc@1.11.3%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^libpciaccess@0.13.4%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^libtool@2.4.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^m4@1.4.17%gcc@5.3.0+sigsegv arch=darwin-elcapitan-x86_64
^libsigsegv@2.10%gcc@5.3.0 arch=darwin-elcapitan-x86_64

^callpath@1.0.2%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^dyninst@9.2.0%gcc@5.3.0~stat_dysect arch=darwin-elcapitan-x86_64

^libdwarf@20160507%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^libelf@0.8.13%gcc@5.3.0 arch=darwin-elcapitan-x86_64

LLNL-PRES-806064
27Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

Spack builds each package in its own compilation environment

Spack
Process

Set up environment

CC = spack/env/spack-cc SPACK_CC = /opt/ic-15.1/bin/icc
CXX = spack/env/spack-c++ SPACK_CXX = /opt/ic-15.1/bin/icpc
F77 = spack/env/spack-f77 SPACK_F77 = /opt/ic-15.1/bin/ifort
FC = spack/env/spack-f90 SPACK_FC = /opt/ic-15.1/bin/ifort

PKG_CONFIG_PATH = ... PATH = spack/env:$PATH
CMAKE_PREFIX_PATH = ...
LIBRARY_PATH = ...

do_install()

Install dep1 Install dep2 Install package…

Build
Process

Fork

install() configure make make install

-I /dep1-prefix/include
-L /dep1-prefix/lib
-Wl,-rpath=/dep1-prefix/lib

Compiler wrappers
(spack-cc, spack-c++, spack-f77, spack-f90)

icc icpc ifort

▪ Forked build process isolates environment for each build.
Uses compiler wrappers to:
— Add include, lib, and RPATH flags
— Ensure that dependencies are found automatically
— Load Cray modules (use right compiler/system deps)

LLNL-PRES-806064
28Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

§ Spack installs each package in its own prefix

§ Some packages need to be installed within directory structure of other packages
— i.e., Python modules installed in $prefix/lib/python-<version>/site-packages
— Spack supports this via extensions

Extensions and Python Support

class PyNumpy(Package):
"""NumPy is the fundamental package for scientific computing with Python."""

homepage = "https://numpy.org"
url = "https://pypi.python.org/packages/source/n/numpy/numpy-1.9.1.tar.gz"
version('1.9.1', ' 78842b73560ec378142665e712ae4ad9’)

extends('python’)

def install(self, spec, prefix):
setup_py("install“, "--prefix={0}".format(prefix))

LLNL-PRES-806064
29Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

spack/opt/
linux-rhel6-x86_64/
gcc-4.7.2/
python-2.7.12-6y6vvaw/
lib/python2.7/site-packages/
numpy@

py-numpy-1.10.4-oaxix36/
lib/python2.7/site-packages/
numpy/

...

Spack extensions

§ Symbolic link to Spack install location

§ This is an older feature – we are encouraging
users to use spack environments instead
— More on this later!

spack/opt/
linux-rhel6-x86_64/
gcc-4.7.2/
python-2.7.12-6y6vvaw/
lib/python2.7/site-packages/
..

py-numpy-1.10.4-oaxix36/
lib/python2.7/site-packages/
numpy/

...

$ spack activate py-numpy @1.10.4

§ Some packages need to be installed within
directory structure of other packages

§ Examples of extension packages:
— python libraries are a good example
— R, Lua, perl
— Need to maintain combinatorial versioning

LLNL-PRES-806064
30Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

packages:
mpi:

buildable: False
paths:

openmpi@2.0.0 %gcc@4.7.3 arch=linux-rhel6-ppc64:
/path/to/external/gcc/openmpi-2.0.0

openmpi@1.10.3 %gcc@4.7.3 arch=linux-rhel6-ppc64:
/path/to/external/gcc/openmpi-1.10.3

...

mpileaks@2.3
gcc@4.7.3

arch=linux-redhat6-ppc64

callpath@1.0
gcc@4.7.3

arch=linux-redhat6-ppc64
+debug

openmpi@2.0.0
gcc@4.7.3

arch=linux-redhat6-ppc64

dyninst@8.1.2
gcc@4.7.3

arch=linux-redhat6-ppc64

hwloc@1.11.3
gcc@4.7.3

arch=linux-redhat6-ppc64

libpciaccess@0.13.4
gcc@4.7.3

arch=linux-redhat6-ppc64

libtool@2.4.6
gcc@4.7.3

arch=linux-redhat6-ppc64

m4@1.4.17
gcc@4.7.3

arch=linux-redhat6-ppc64

libsigsegv@2.10
gcc@4.7.3

arch=linux-redhat6-ppc64

libelf@0.8.11
gcc@4.7.3

arch=linux-redhat6-ppc64

libdwarf@20130729
gcc@4.7.3

arch=linux-redhat6-ppc64

Building against externally installed software

mpileaks@2.3
gcc@4.7.3

arch=linux-redhat6-ppc64

callpath@1.0
gcc@4.7.3

arch=linux-redhat6-ppc64
+debug

openmpi@2.0.0
gcc@4.7.3

arch=linux-redhat6-ppc64

dyninst@8.1.2
gcc@4.7.3

arch=linux-redhat6-ppc64

libelf@0.8.11
gcc@4.7.3

arch=linux-redhat6-ppc64

libdwarf@20130729
gcc@4.7.3

arch=linux-redhat6-ppc64

/path/to/external/gcc/openmpi-2.0.0

packages.yaml

Users register external packages in a
configuration file (more on these later). Spack prunes the DAG when adding external packages.

mpileaks ^callpath@1.0+debug
^openmpi ^libelf@0.8.11

LLNL-PRES-806064
31Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

$ spack repo create /path/to/my_repo
$ spack repo add my_repo
$ spack repo list
==> 2 package repositories.
my_repo /path/to/my_repo
builtin spack/var/spack/repos/builtin

Spack package repositories

spack/var/spack/repos/builtin

“standard” packages in the spack mainline.

my_repo
proprietary packages, pathological builds

§ Spack supports external package
repositories
— Separate directories of package recipes

§ Many reasons to use this:
— Some packages can’t be released publicly
— Some sites require bizarre custom builds
— Override default packages with site-

specific versions

§ Packages are composable:
— External repositories can be layered on

top of the built-in packages
— Custom packages can depend on built-in

packages (or packages in other repos)

LLNL-PRES-806064
32Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

Spack mirrors

§ Spack allows you to define mirrors:
§ Directories in the filesystem
§ On a web server
§ In an S3 bucket

§ Mirrors are archives of fetched tarballs, repositories,
and other resources needed to build
§ Can also contain binary packages

§ By default, Spack maintains a mirror in
var/spack/cache of everything you’ve fetched so far.

§ You can host mirrors internal to your site
§ See the documentation for more details

Spack
users

Local cache

Shared FS

S3 Bucket

Original source
on internet

LLNL-PRES-806064
33Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

Environments,
spack.yaml and spack.lock

Follow script at spack-tutorial.readthedocs.io

http://spack.rtfd.io/

LLNL-PRES-806064
34Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

Hands-on Time: Configuration

Follow script at spack-tutorial.readthedocs.io

http://spack.rtfd.io/

LLNL-PRES-806064
35Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

Find these slides and associated scripts here:

spack-tutorial.readthedocs.io

Tutorial Materials

We will also have a chat room on Spack slack.
Get an invite here:

We will give you login credentials for the hands-on exercises
once you join Slack.

slack.spack.io
Join the “tutorial” channel!

LLNL-PRES-806064
36Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

Hands-on Time: Creating Packages

Follow script at spack-tutorial.readthedocs.io

http://spack.rtfd.io/

LLNL-PRES-806064
37Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

Hands-on Time:
Developer Workflows

Follow script at spack-tutorial.readthedocs.io

http://spack.rtfd.io/

LLNL-PRES-806064
38Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

Hands-on Time:
Binary Caches and Mirrors

Follow script at spack-tutorial.readthedocs.io

http://spack.rtfd.io/

LLNL-PRES-806064
39Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

More New Features
and the Road Ahead

LLNL-PRES-806064
40Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

§ Two files:
— spack.yaml describes project requirements
— spack.lock records installed versions and configurations exactly
— Enables reproducibility for many configurations

§ Can use environments for:
— Creating containers (spack containerize)
— Auto-generate continuous integration builds (spack ci)
— Deployment (matrix, spack stacks)
— Developer workflows (new!)

Spack environments are the basis for complex workflows
Simple spack.yaml file

install build
project

spack.yaml file with
names of required

dependencies

Lockfile describes
exact versions installed

Dependency
packages

Concrete spack.lock file (generated)

LLNL-PRES-806064
41Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

Generate container images from environments (0.14)

spack containerize

▪ Any Spack environment can be
bundled into a container image

— Optional container section allows
finer-grained customization

▪ Generated Dockerfile uses multi-
stage builds to minimize size of final
image

— Strips binaries
— Removes unneeded build deps

with spack gc

▪ Can also generate Singularity recipes

LLNL-PRES-806064
42Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

§ User adds a gitlab-ci section to environment
— Spack maps builds to GitLab runners
— Generate gitlab-ci.yml with spack ci command

§ Can run in a Kube cluster or on bare metal at an HPC site
— Sends progress to CDash

Spack can generate CI Pipelines
from environments

spack ci

LLNL-PRES-806064
43Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

§ Spack has had compiler
detection for a while
— Finds compilers in your PATH
— Registers them for use

§ We can find any package now
— Package defines:

• possible command names
• how to query the command

— Spack searches for known
commands and adds them to
configuration

§ Community can easily enable
tools to be set up rapidly

spack external find

Logic for finding external
installations in package.py

packages.yamlconfiguration

LLNL-PRES-806064
44Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

class Libsigsegv(AutotoolsPackage, GNUMirrorPackage):
"""GNU libsigsegv is a library for handling page faults in user mode."""

... spack package contents ...

extra_install_tests = ‘tests/.libs’

def test(self):
data_dir = self.test_suite.current_test_data_dir
smoke_test_c = data_dir.join(‘smoke_test.c’)

self.run_test(
'cc’, [

'-I%s' % self.prefix.include,
'-L%s' % self.prefix.lib, '-lsigsegv’,
smoke_test_c,
'-o', 'smoke_test'

]
purpose='check linking’)

self.run_test(
‘smoke_test’, [], data_dir.join('smoke_test.out’),
purpose=‘run built smoke test’)

self.run_test('sigsegv1': ['Test passed’], purpose='check sigsegv1 output’)
self.run_test('sigsegv2': ['Test passed’], purpose='check sigsegv2 output’)

Tests are part of a regular Spack recipe class

Easily save source code from the package

User just defines a test() method

Retrieve saved source.
Link a simple executable.

Spack ensures that cc is a compatible compiler

Run the built smoke test and verify output

Run programs installed with package

spack test: write tests directly in Spack packages,
so that they can evolve with the software

LLNL-PRES-806064
45Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

• Developer features so far have
focused on single packages

• spack dev-build, etc.

• New spack develop feature enables
development environments

• Work on a code
• Develop multiple packages from its

dependencies
• Easily rebuild with changes

• Builds on spack envirnoments
• Required changes to the installation

model for dev packages
• dev packages don’t change paths with

configuration changes
• Allows devs to iterate on builds quickly

spack develop lets developers work on many packages at once

LLNL-PRES-806064
46Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

Spack helped streamline the AML team’s
development environments.

• Before Spack
• Everybody built their own python/pytorch from scratch
• People wrote scripts and passed them around
• Scripts slowly accumulated modifications and magic
• Days were spent trying to debug build differences

• After spack
• Versioned reproducible spack enviroments in a repo
• Standard environments in a shared team directory
• Any team member can get a customizable

working environment in ~20 minutes.
• Change python version, change pytorch version, etc.

spack:
specs:
- py-horovod
- py-torch
- python
- py-h5py
packages:
all:
providers:
mpi:
- mvapich2@2.3
lapack:
- openblas threads=openmp
blas:
- openblas threasd=openmp

buildable: true
variants: [+cuda cuda_arch=37]
compiler: [gcc@7.3.0]

python:
version: [3.8.6]

cudnn:
version:
- 8.0.4.30-11.1-linux-x64

py-torch:
buildable: true
variants: +cuda +distributed

mvapich2:
externals:
- spec: mvapich2@2.3.1%gcc@7.3.0
prefix: /usr/tce/packages/mvapich2/mvapich2-2.3-gcc-7.3.0

compilers:
- compiler:

operating_system: rhel7
paths:
cc: /usr/tce/packages/gcc/gcc-7.3.0/bin/gcc
cxx: /usr/tce/packages/gcc/gcc-7.3.0/bin/g++

Configure and build
complex software stacks
with a single spack.yaml file

LLNL-PRES-806064
47Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

• Previously only got parallelism in single installs
• Now, all packages in an environment are built bottom up

• We have developed a novel lock-based algorithm
• Requires no scheduler integration or server
• Uses only reader/writer fcntl locks to coordinate across

processes/nodes
• Works on any distributed file system with flock enabled

• Easily build entire environment manifests at once

Spack’s parallel build support can complete 297 E4S packages
in 85 minutes on a single node

srun –N 1 –n 8 spack install .

E4S Manifest

Distributed locking algorithm

LLNL-PRES-806064
48Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

§ The new concretizer in v0.16.0 allows us to solve this
problem
— Uses Answer Set Programming – framework for solving NP-hard

optimization problems
— Unlike other systems, package manager has insight into build

details and configuration

§ ASP program has 2 parts:
1. Large list of facts

• generated from our package repositories
• 20,000 – 30,000 facts is typical
• includes dependencies, versions, options, etc.

2. Small logic program
• ~800 lines of ASP code
• 300 rules + 11 optimization criteria

Build configuration is its own many-dimensional
constraint optimization problem

Sample ASP input for Spack solver

LLNL-PRES-806064
49Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

§ Dependencies and other constraints
within SDKs could get very messy

§ The new concretizer removes the need
for some of the more painful constructs

§ Also allows for new constructs, like
specializing dependencies
— When conditions are now much more

general
— Can be solved together with other

constraints.

The new concretizer enables significant simplifications
to packages, particularly complex constraints in SDKs

depends_on('foo+A+B', when='+a+b')
depends_on('foo+A~B', when='+a~b')
depends_on('foo~A+B', when='~a+b')
depends_on('foo~A~B', when='~a~b')

depends_on('foo')
depends_on('foo+A', when='+a')
depends_on('foo+B', when='+b’)

Before

After

depends_on('blas’)
depends_on(

'openblas threads=openmp’, when='^openblas’
)

Specializing a virtual did not previously work:

In some cases we needed cross-products of
dependency options:

LLNL-PRES-806064
50Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

Four of the top six most wanted features in Spack
are tied to the new concretizer

• Complexity of packages in Spack is increasing
– many more package solves require backtracking

than a year ago
– Many variants, conditional dependencies, special

compiler requirements

• More aggressive reuse of existing installs requires
better dependency resolution
– Need to be able to analyze how to configure the

build to work with installed packages

• Separate resolution of build dependencies also
requires a more sophisticated solver
– Makes the solve even more combinatorial
– Needed to support mixed compilers, version

conflicts between different package’s build
requirements

Part of milestone STED09-8

LLNL-PRES-806064
51Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

We will be releasing v0.17 soon

Main goals:
1.Get rid of the old concretizer, make the new concretizer default
2. Improve and harden binary cache workflows
3.Make Spack able to optimize for reuse of installed packages and

packages from binary mirrors
4.Make “shared” spack instances for facilities

more manageable
5.Get rid of pain points like ~/.spack configuration

LLNL-PRES-806064
52Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

§ Sharing a Spack instance
— Many users want to be able to install Spack on a cluster and `module load spack`
— Installations in the Spack prefix are shared among users
— Users would spack install to their home directory by default.
— This requires us to move most state out of the Spack prefix

• Installations would go into ~/.spack/…

§ Getting rid of configuration in ~/.spack
— While installations may move to the home directory, configuration there is causing issues
— User configuration is like an unwanted global (e.g., LD_LIBRARY_PATH 😬)

• Interferes with CI builds (many users will rm -rf ~/.spack to avoid it)
• Goes against a lot of our efforts for reproducibility
• Hard to manage this configuration between multiple machines

— Environments are a much better fit
• Make users keep configuration like this in an environment instead of a single config

Spack 0.17 Roadmap: permissions and directory structure

LLNL-PRES-806064
53Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

§ We need deeper modeling of compilers to handle
compiler interoperability
— libstdc++, libc++ compatibility
— Compilers that depend on compilers
— Linking executables with multiple compilers

§ First prototype is complete!
— We’ve done successful builds of some packages using

compilers as dependencies
— We need the new concretizer to move forward!

§ Packages that depend on languages
— Depend on cxx@2011, cxx@2017, fortran@1995, etc
— Depend on openmp@4.5, other compiler features
— Model languages, openmp, cuda, etc. as virtuals

Spack 0.18 Roadmap: compilers as dependencies

1

intel@17

gcc@xxx

B

R

2

intel@16

B

gcc@4.9.3

R

L

Already-installed dep

Compiler-imposed dep

libstdc++

L
L

Compilers and runtime libs fully modeled
as dependencies

LLNL-PRES-806064
54Join #tutorial on Slack: spackpm.herokuapp.com Materials: spack-tutorial.readthedocs.io

§ There are lots of ways to get involved!
— Contribute packages, documentation, or features at github.com/spack/spack
— Contribute your configurations to github.com/spack/spack-configs

§ Talk to us!
— You’re already on our Slack channel (spackpm.herokuapp.com)
— Join our Google Group (see GitHub repo for info)
— Submit GitHub issues and pull requests!

Join the Spack community!

@spackpm

We hope to make distributing & using HPC software easy!

github.com/spack/spack
Star us on GitHub! Follow us on Twitter!

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

